
Main Results
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FIGURE 2: Structure of the pulsar magnetosphere: left – for β ≡ 1 and x0 = 1; right – for x0 = 0.8 and β varying in such a way that the
current density in the polar cap of pulsar is nearly constant (see Fig.4 (right)). The Light Cylinder is shown by the dot-dashed line.
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FIGURE 3: For β ≡ 1: left – energy losses normalized to the magnetodipolar energy losses as a function of x0; right – total electromagnetic
energy in two different volumes as a function of x0
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FIGURE 4: Poloidal current density in the polar cap of pulsar normalized to the Goldreich-Julian current density: left – for β ≡ 1 and
different values of x0; right – for variable β producing nearly constant current density. Michel current density is shown by the dashed line

Constant β ≡ 1

• Each solution has been checked for applicability of the force-free condition E < B. In none of them this condition is violated.

• The total energy of the electromagnetic field in the magnetosphere Ξ =
∫

V ol(B
2 + E2)/(8π) dV decreases with increasing of x0, see

Fig. 3 (right).

• Energy losses of the pulsar increase with decreasing of x0 and are given by (see Fig. 3 (left))

W = 0.94 x−2.065
0 ×

µ2Ω4

c3
, (7)

• In configurations with x0 > 0.6 there is a volume return current flowing along the open magnetic field lines, which makes however only a
small part of the whole return current. The current density (in units of jGJ) close to the polar cap boundary increases with increasing of
x0. The current density does not exceed the Goldreich-Julian current density jGJ ≡ ρGJc and at most field lines it is less than jGJ

The problem: current density distribution for β ≡ 1 is not compatible with the Space Charge Limited Flow regime of the stationary polar
cap cascades. Current density distribution with return volume current is not compatible with any cascade model.

Variable β – magnetosphere with differential rotation in the open field line zone

• Current density can deviate from distributions shown in Fig. 4 (left) and could be made even nearly constant over the polar cap of pulsar.
The latter would require adjusting of the plasma angular velocity, i.e. large values of the non-corotational electric potential V . Moreover,
in this case the current density j is always less than jGJ, see Fig. 4

Conclusions

• The magnetosphere of pulsar should evolve with time, i.e the relative size (in RLC) of the closed field line zone should change. This will
result in pulsar breaking index different from 3.

• The magnetosphere could rotate differentially – additional degree of freedom for adjusting of the current density required by the global
structure of the magnetosphere to the current density produced by the polar cap cascades.

• Electromagnetic cascades in the polar cap of pulsar should be non-stationary.

Pulsar Equation

Force-free magnetosphere of an aligned rotator rotating with the angu-
lar velocity Ω can be well described by the so-called pulsar equation

(β2x2 − 1)(∂xxψ + ∂zzψ) +
β2x2 + 1

x
∂xψ−

−S
dS

dψ
+ x2β

dβ

dψ
(∇ψ)2 = 0 . (1)

Here all coordinates are normalized to Rcor
LC ≡ c/Ω, corresponding

to the Light Cylinder radius for co-rotating plasma. β ≡ ΩF/Ω -
is the normalized angular velocity of plasma rotation. We used such
normalization for ψ that the dipole magnetic field function near the NS
surface is given by

ψdip =
x2

(x2 + z2)3/2
, (2)

The normalized poloidal current function S ≡ (4π/c)(R2
LC/µ) I , µ ≡

B0R
3
NS/2. Magnetic field is expressed through the functions Ψ ≡

µ/RLC ψ and I:

B =
∇Ψ × eφ

$
+

4π

c

I

$
eφ (3)

At the Light Cylinder, RLC ≡ c/ΩF , the pulsar equation has the form

2β ∂xψ = S
dS

dψ
−

1

β

dβ

dψ
(∇ψ)2 . (4)

Any smooth solution must satisfy this equation at the Light Cylinder
(LC). Angular velocity of plasma rotation in the open field line domain
is

ΩF = Ω + c
∂V

∂Ψ
. (5)

where V is the non-corotational electric potential, caused by presence
of an accelerating electric field in the polar cap of pulsar. If from a par-
ticularly theory of polar cap cascade we know β as a function of ψ, β =
β(ψ), the position of the Light Cylinder RLC(x, z) = c/ΩF [ψ(x, z)]
must be determined self-consistently together with the solution of the
pulsar equation.

Solution method

We assume Y-configuration of the magnetosphere, i.e. the existence
of an equatorial current sheet with the return current. Equation (1) is
solved numerically in a domain xNS ≤ x ≤ xmax, zNS ≤ z ≤ zmax
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FIGURE 1: Calculation domain and boundary conditions

The return current flowing along the last closed magnetic field line is
smeared over the region [ψ0 − dψ, ψ0].

Boundary conditions are shown in Fig. 1. The equation (1) is solved
by a full multigrid (V-cycles) FAS scheme. As a smoother we used
Gauss-Seidel scheme.

At each iteration step we find position of the LC {(xLC j, zj), j =
0 . . . n} by solving numerically the equation

xLC j = 1/β
[

ψ(x, zj)
]

. (6)

by the Newton method for each z-axis grid point zj, and find poloidal
current function SS′ ≡ S (dS/dψ) from the equation (4). Then we
use piece-polynomial interpolation for SS ′ and calculate SS′(x, z) =
SS′ [ψ(x, z)] in each domain point.

β in the current sheet smoothly changes to the value β = 1 in the
closed field line zone.
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