FORCE-FREE MAGNETOSPHERE OF AN ALIGNED ROTATOR

Andrey Timokhin (Sternberg Astronomical Institute, Moscow, Russia)

Pulsar Equation

Force-free magnetosphere of an aligned rotator rotating with the angular velocity Ω can be well described by the so-called pulsar equation

$$
\begin{align*}
&\left(\beta^{2} x^{2}-1\right)\left(\partial_{x x} \psi+\partial_{z z} \psi\right)+\frac{\beta^{2} x^{2}+1}{x} \partial_{x} \psi- \\
&-S \frac{d S}{d \psi}+x^{2} \beta \frac{d \beta}{d \psi}(\nabla \psi)^{2}=0 . \tag{1}
\end{align*}
$$

Here all coordinates are normalized to $R_{\mathrm{LC}}^{\mathrm{cor}} \equiv c / \Omega$, corresponding to the Light Cylinder radius for co-rotating plasma. $\beta \equiv \Omega_{F} / \Omega-$ is the normalized angular velocity of plasma rotation. We used such normalization for ψ that the dipole magnetic field function near the NS surface is given by

$$
\begin{equation*}
\psi^{\mathrm{dip}}=\frac{x^{2}}{\left(x^{2}+z^{2}\right)^{3 / 2}}, \tag{2}
\end{equation*}
$$

The normalized poloidal current function $S \equiv(4 \pi / c)\left(R_{\mathrm{LC}}^{2} / \mu\right) I, \mu \equiv$ $B_{0} R_{\mathrm{NS}}^{3} / 2$. Magnetic field is expressed through the functions $\Psi \equiv$ $\mu / R_{\mathrm{LC}} \psi$ and I :

$$
\begin{equation*}
\mathbf{B}=\frac{\nabla \Psi \times \mathbf{e}_{\phi}}{\varpi}+\frac{4 \pi}{c} \frac{I}{\varpi} \mathbf{e}_{\phi} \tag{3}
\end{equation*}
$$

At the Light Cylinder, $R_{\mathrm{LC}} \equiv c / \Omega_{F}$, the pulsar equation has the form

$$
\begin{equation*}
2 \beta \partial_{x} \psi=S \frac{d S}{d \psi}-\frac{1}{\beta} \frac{d \beta}{d \psi}(\nabla \psi)^{2} \tag{4}
\end{equation*}
$$

Any smooth solution must satisfy this equation at the Light Cylinder (LC). Angular velocity of plasma rotation in the open field line domain is

$$
\begin{equation*}
\Omega_{\mathrm{F}}=\Omega+c \frac{\partial V}{\partial \Psi} \tag{5}
\end{equation*}
$$

where V is the non-corotational electric potential, caused by presence of an accelerating electric field in the polar cap of pulsar. If from a particularly theory of polar cap cascade we know β as a function of $\psi, \beta=$ $\beta(\psi)$, the position of the Light Cylinder $R_{\mathrm{LC}}(x, z)=c / \Omega_{F}[\psi(x, z)]$ must be determined self-consistently together with the solution of the pulsar equation.

Solution method

We assume Y-configuration of the magnetosphere, i.e. the existence of an equatorial current sheet with the return current. Equation (1) is solved numerically in a domain $x_{\mathrm{NS}} \leq x \leq x_{\max }, z_{\mathrm{NS}} \leq z \leq z_{\max }$

FIGURE 1: Calculation domain and boundary conditions
The return current flowing along the last closed magnetic field line is smeared over the region $\left[\psi_{0}-d \psi, \psi_{0}\right]$.

Boundary conditions are shown in Fig. 1. The equation (1) is solved by a full multigrid (V-cycles) FAS scheme. As a smoother we used Gauss-Seidel scheme.

At each iteration step we find position of the $\mathrm{LC}\left\{\left(x_{\mathrm{LC}} j, z_{j}\right), j=\right.$ $0 \ldots n\}$ by solving numerically the equation

$$
\begin{equation*}
x_{\mathrm{LC} j}=1 / \beta\left[\psi\left(x, z_{j}\right)\right] \tag{6}
\end{equation*}
$$

by the Newton method for each z-axis grid point z_{j}, and find poloidal current function $S S^{\prime} \equiv S(d S / d \psi)$ from the equation (4). Then we use piece-polynomial interpolation for $S S^{\prime}$ and calculate $S S^{\prime}(x, z)=$ $S S^{\prime}[\psi(x, z)]$ in each domain point.
β in the current sheet smoothly changes to the value $\beta=1$ in the closed field line zone.

References

1. A. N. Timokhin, 2006, MNRAS (in press, doi: 10.1111/j.13652966.2006.10192.x), astro-ph/0511817
2. A. N. Timokhin, 2006, in preparation

Main Results

Figure 2: Structure of the pulsar magnetosphere: left - for $\beta \equiv 1$ and $x_{0}=1$; right - for $x_{0}=0.8$ and β varying in such a way that the current density in the polar cap of pulsar is nearly constant (see Fig. 4 (right)). The Light Cylinder is shown by the dot-dashed line.

FIGURE 3: For $\beta \equiv 1$: left - energy losses normalized to the magnetodipolar energy losses as a function of x_{0}; right - total electromagnetic energy in two different volumes as a function of x_{0}

FIGURE 4: Poloidal current density in the polar cap of pulsar normalized to the Goldreich-Julian current density: left - for $\beta \equiv 1$ and different values of x_{0}; right - for variable β producing nearly constant current density. Michel current density is shown by the dashed line

Constant $\beta \equiv 1$

- Each solution has been checked for applicability of the force-free condition $E<B$. In none of them this condition is violated.
- The total energy of the electromagnetic field in the magnetosphere $\Xi=\int_{V o l}\left(B^{2}+E^{2}\right) /(8 \pi) d V$ decreases with increasing of x_{0}, see Fig. 3 (right).
- Energy losses of the pulsar increase with decreasing of x_{0} and are given by (see Fig. 3 (left))

$$
\begin{equation*}
W=0.94 x_{0}^{-2.065} \times \frac{\mu^{2} \Omega^{4}}{c^{3}} \tag{7}
\end{equation*}
$$

- In configurations with $x_{0}>0.6$ there is a volume return current flowing along the open magnetic field lines, which makes however only a small part of the whole return current. The current density (in units of j_{GJ}) close to the polar cap boundary increases with increasing of x_{0}. The current density does not exceed the Goldreich-Julian current density $j_{\mathrm{GJ}} \equiv \rho_{\mathrm{GJ}} c$ and at most field lines it is less than j_{GJ}

The problem: current density distribution for $\beta \equiv 1$ is not compatible with the Space Charge Limited Flow regime of the stationary polar cap cascades. Current density distribution with return volume current is not compatible with any cascade model.

Variable β - magnetosphere with differential rotation in the open field line zone

- Current density can deviate from distributions shown in Fig. 4 (left) and could be made even nearly constant over the polar cap of pulsar. The latter would require adjusting of the plasma angular velocity, i.e. large values of the non-corotational electric potential V. Moreover, in this case the current density j is always less than j_{GJ}, see Fig. 4

Conclusions

- The magnetosphere of pulsar should evolve with time, i.e the relative size (in R_{LC}) of the closed field line zone should change. This will result in pulsar breaking index different from 3 .
- The magnetosphere could rotate differentially - additional degree of freedom for adjusting of the current density required by the global structure of the magnetosphere to the current density produced by the polar cap cascades.
- Electromagnetic cascades in the polar cap of pulsar should be non-stationary.

