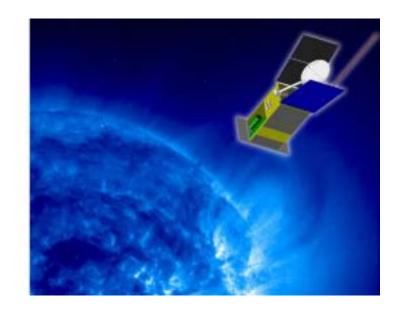


Optics for Instruments in Space & Solar Orbiter

Berend Winter bw@mssl.ucl.ac.uk


Mullard Space Science Laboratory University College London

Berend Winter

Contents

- The spacecraft
- Mission characteristics
 - Thermal issues
 - Mechanical issues
 - Material issues
 - Optics Issues
- Examples
 - Solar Orbiter

The Spacecraft

- Spacecraft
- Usually consist of two parts
 - Service Module
 - Payload module

Herschel (vacuum vessel, primary and service module

٠

Thermal Issues

- Space
 - Large temperature variation due to the spacecraft being subjected to:
 - Cold space (4 Kelvin)
 - The Sun

Cs0	AU	1/r2	W/m2	ratio
1367	0.21	22.7	30998	18.4
1367	0.9	1.2	1688	
1367	1.21	0.7	934	

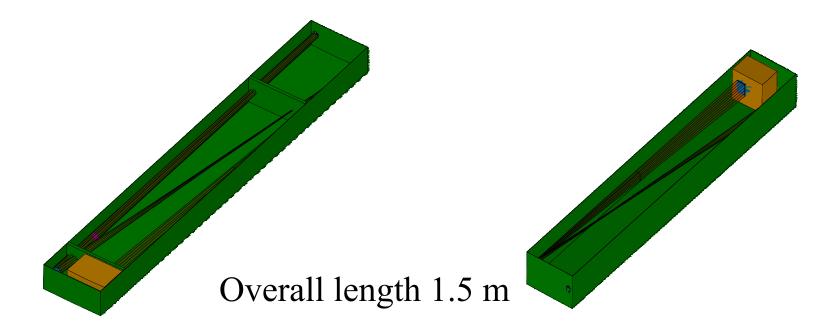
- Solar Orbiter Exposure to the Sun
- Temperature variation of structures (not optics!)
 - Exposed to Sun: 100 Celsius
 - In the Earth's shadow: -180 Celsius
- Thermal stability
 - Normally +/- 10 degrees
 - 1 micro-Kelvin (Gaia)

Mechanical Issues

- Structure
 - Is there to:
 - House instruments, support equipment
 - Provide for secure launch environment
 - Provide for protection
 - Thermal
 - Radiation
 - Light (stray light)
 - Stability
 - Thermal
 - Optical
 - Optical benches (heavy)

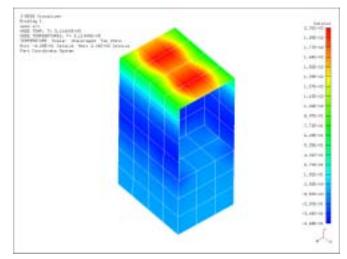
Material Issues

- Material often need to be able to:
 - Sustain radiation
 - Survive extreme temperatures
 - Strong
 - Lightweight
- Materials always need to be
 - Clean!
 - Low on out-gassing (optics!)
 - Don't generate dust (optics!)



Optics

- Outgassing
 - Optical components have shiny surfaces that radiate heat better than absorb it
 - In general optical components are the coldest in their environment
 - Any dust and molecular contamination will settle mostly on optical components
 - Some wavelengths require extremely clean instruments (EUV)
 - XMM-OM
 - UVOT
 - Solar-B and Solar-Orbiter
- Alignment
 - In the order of 1 to 10 micron is pretty normal (1 micron or better for EUV)
 - It does go down to nano-meter stability and alignment (Gaia)
 - The thermal expansion of materials itself is causing problems
 - typical distance between optical components is 500 1500 mm
 - typical temperature swing is in the order of +/- 5 degree
 - typical low thermal expansion material has CTE of 0.5 2 ppm/K
 - misalignment variation 2.5 to 30 mircon



Solar-Orbiter (Solo) General layout of the HRI and FSI

Thermal Design - Solo

- General observation on thermal design
 - Spacecraft thermal environment is very severe
 - Large fluctuation in solar (heat) flux (factor of 18 in final orbit...)
 - No doubt the part of the spacecraft facing the sun will be very hot
 - Initial calculations indicate a maximum heat shield temperature of 400-600 Celcius
 - Thermal environment of the payload bay varies between
 - » looking at cold space 4-5 K
 - » Looking in the direction of the heat shield 200 Celcius
 - This will induce large thermal gradients around the telescopes

Thermal Design - Solo

- Telescope
 - Telescope temperature depends strongly on the interface with the spacecraft
 - Assuming the thermal coupling is minimised with regard to conduction
 - Assuming half the telescope surface is seeing (part) of dark space
 - Telescope temperatures in the range of 0-100 °C are likely to be reached
 - During the orbit away from the sun the telescope will cool down considerably if no special measures are taken
- Detector
 - Operating temperature 20 °C (TBC)
 - Using passive cooling this may be possible to reach in case the telescope external temperature is 100 °C
 - We very likely need a cold finger to an external radiator
 - We also may need a heat pipe to dump the heat to that radiator
- With a telescope temperature of 100 °C we are looking at a heatflux of about 100-200 W radiated inside the telescope, this is a significant amount

Mechanical Design - Solo

- Mass budget for this mission is very tight (range 5-10 kg for main structure)
- Structure needs to be stiff to isolate the instrument from main S/C resonances
- The sensitivity of the alignment due to temperature fluctuations needs to be minimal
 - We need a material which has a high effective stiffness and a low CTE
- CFRP is the best material to meet these requirements
 - Design of lightweight CFRP structures has drawbacks (needs to be acknowledged)
 - Continuous loss of moist, CFRP keeps shrinking....

Mechanical Design Solo

- Due to a temperature variation of +100 °C
 - 1500 mm of CFRP will expand 50-75 micro meter (Al would have expanded 3.5 mm)
 - This raises concerns with regard to S/C design....
- The suspension of the cluster of three telescopes needs to be:
 - actively controlled following the current requirements
 - kinematic (to minimise overall deformation of the telescopes due to S/C interface)
- The materials used need to be ultra clean at high temperatures
 - Low in outgassings

Conclusion

- This presentation gave a brief (coarse) overview of things to be considered when designing instruments for use in space
 - Thermal environment can be challenging
 - Mass critical
 - Cleanliness
 - At critical wavelengths (EUV) adaptive optics are needed
- It needs to be said that:
 - The space community is very conservative
 - reliability
 - heritage
- Adaptive optic adds to the complexity of the instrument and introduces a single point failure possibility
 - Adaptive optics are likely only applied when conventional techniques can't meet the requirements
 - Time constant for adaptive optics in space is long..... varying between 1.5 h to 30 days

27 January 2003

Berend Winter