Thermochromic Radiator

• Using a thermochromic material a variable emittance structure has been developed

Dr A. J. Topping Department of Engineering Science Oxford University

Transmission properties of VO₂

- Transmission is very large
- Indicates a high absorption coefficient

Reflection properties of VO₂

- After transition material becomes reflective
- Low emittance when hot-unsuitable for radiative cooling

Intelligent Radiator Structure

Using an index matched coating as the window to the structure (matching the metallic state)

This allows reflectance modulation by variable transmission through the structure

In the metallic state the VO2 interface reflection is reduced coupling more energy into the absorbing structure

In the semi conducting state all constituents are transparent except the rear reflecting layer

Intelligent Radiator Model

• Initial VO₂ film show poor thermal reflectance modulation *(change in optical constants small)*

Transformation of Transition

- Transition temperature of VO₂ has been shown to be tunable, with doping of tungsten
- Transition temperatures have been reportedly reduced to 110K with 6% Tungsten doping

Type of Emittance Change

- Researchers have shown with control of constituents and crystallinity
 - Variation of the speed of transition
 - Both fast (step) and slow (linear) changes
 - Designs have been produced allowing for a mixture of transitions:of temperature or type

Other Vary-e Systems

- Electrochromic- Transition metal oxide
- Electrochromic- Conductive polymers
- Electrostatic
- MEMS

micro electro mechanical systems

Strengths of the intelligent radiator

- Extreme reduction in mass with no loss of performance
- No power requirements or moving parts
- Failure modes reduced due to durable nature of structure
- Applicable to any surface with no loss of performance
- Damage insensitive—ideal for hostile environments

Potential for intelligent Radiator

- Use as (or with) fully integrated autonomous thermal control system
- Specialised use where power supply and control is difficult
- Personal heat removal from environmental suits

References

Transmittance data Dr. Guillaume Guzman's website http://www.solgel.com/articles/August00/thermo/Guzman.htm

Reflectance data: <u>http://www.univ-tln.fr/Recherche/unites/l2mi/fred/vo2.htm</u>

John Topping johntopping@hotmail.com