

Solar-B EIS Engineering Meeting a July 27 - 29, 1999

H. Hara (NAOJ)

Solar-B

Documents for Subsystem Design

Document Name		Date	Lang
rmal Design Standard for Solar-B	(DRAFT)	Feb 12,1999	J
uirements for Structural Mathematical Models		Mar 8,1999	E
chanical Design Standard	(DRAFT)	Mar 8, 1999	J+E
ironmental Conditions for Solar-B	(DRAFT)	Mar 8, 1999	J+E
tamination Control Program Plan for Solar-B	(DRAFT)	Mar 8, 1999	E
ır-B Electrical Design Standard	(DRAFT)	Apr 24,1999	J
	(DRAFT)	July 27,1999	Е
ır-B/Telescope Thermal Interface Condition	(DRAFT)	June 30, 1999	J+E
uirements for Interface Thermal Math Model			
of Solar-B Telescope	(DRAFT)	June 30, 1999	J+E
metry & Command Design Standard	(DRAFT)	not yet made	

Solar-B Requests from System side to EIS

Position of Mounting I/F points. There is inconsistent with the I/F legs. Chang the drawing to meet the I/F points before making structure math model.

Electrical relationship among ICU, MHC, and FPA. How these are connected electrical lines ?

Ranges of temperature is too narrow. Widen the ranges (relatively urgent).

Show disturbance torque of each moving component (urgent issue).

32 W solar power is input in EIS at entrance filter. Is this OK ? How is this energy to be treated ?

Number and location of survival heaters when EIS primary power is off. Temperatures for switch-on and switch-off controls should be reported. The survival heaters are controlled by HCE. At present three survival heaters are allocated to EIS by the request of Japanese side, though the usage is uncertain. This issue must be reported to the system side by July 15.

Solar-B Solar-B system issues

netry & Command system: ASTRO-F system was adopted.

nary of electrical interface related to EIS was shown (see Fig. 1).

lite structure almost meet the size of fairing envelope. eption: XRT & EIS. In case of EIS, interface points should be shifted to -Z dir

is put at low part of +Y side panel of bus structure (Fig.2).

ht of EIS: EIS-STR 50.3 kg, EIS-ICU 6.0 kg, EIS-HAR 4.0 kg. Margin is managed by system side in a different level of system issue.

r: ICU: Wmax = 60 W, Imax = 2.3 A Heater power of 10 W is tentatively allocated to EIS because of no input.

nal analysis of optical bench + mounting legs + bus structure was almost finis ge of optical axes of SOT, XRT, and EIS is only 0.2-0.3 arcsec during the sun ronous orbit in the worst case. The infinite rigid body for telescopes is assums analysis.

Solar-B Solar-B system issues

- ss: If there is an electrical harness whose length should be less than 4 m by so reason, we must report it to the system side.
- : savings: Even in the case of sun-synchronous orbit, satellite night comes in s period. System asked all telescope teams if the power saving can be during the night period or not for power saving.

oltage for SOT, XRT, and EIS is 28 + (A) V. (A) will be less than 2.

ure math model: The schedule of structure analysis was updated (see Fig. 3).

nal math model: The schedule of thermal analysis was updated (see Fig. 4).

28V primary power line secondary power line

Fig. 1

Solar-B Location of EIS-ICU in Bus Structure

Solar-B Schedule of Structure Analysis

Fig. 3

Solar-B Schedule of Thermal Analysis

'Solar-B

MDP development schedule

Specifications of MDP shall be fixed by the following dates:

hardware related issues: August 31, 1999

software related issues: November 30, 1999

Purpose of PM tests (Feb 1 - Mar 31, 2001)

Interface with SOT, XRT, EIS, DHU, TCI-B, HCE, DIST

- establishment of hardware interface
- establishment of software protocol
- establishment of exposure sequence

Confirmation of main processing functions

- confirmation of processing command/telemetry
- confirmation of processing science data including compressic

Flow of image data processing in MDP

'Solar-B	Data lines		
line: norm	al differential RS-422 line, 1Mbps		
Science	ce data (spectrum or image)	EIS	Μ
Status	data (~1 sec interval; Report of shutter		
	& scan mirror motions will be required.)		
. Dump	data of EIS observation table		
. Dump	data of EIS compression table		
1DP knows	kind of data by looking at the header part after the	e data are	transfe
2 bits data f	low in this data line.		
naximum tra	nsfer speed: 1 Mbps (TBD)		
Input Buffer	in MDP: 1. double buffer system 2. buffer size:	8 Mbytes	s/buffe
cept of Data science of	Format: fixed-length header + variable-length d maximum image size in a single packed lata: header + 12 bits CCD image data The number of pixels in the image data is a Is this OK ?	ata et = 256 kj multiple c	pixel of 8.
other dat	$\frac{1}{12}$: neader + 12 bit data (<u>Upper 4 bits are all 0.</u>)	is this OK	. ()

an send data to MDP at any time when a status of MDP buffer status line is R

UIREMENTS

juest of sending status data is informed from MDP via command line, and EIS II send status data to MDP within 0.5 sec.

y of DR will be ~3 Gbits, but only downlink 2.4 Gbits during the KSC/DSN c

'Solar-B

Command Lines

ımand line: low-power differential RS-422 line, 64 kbps

P contractors would like to know:

- 1. list of commands required for EIS operation
- 2. how ICU reads commands from MDP (Please explain it.)
- 3. response time for a command
- 4. size of buffer ?
- 5. whether there is some restriction for the data format or not.

mand answer back: receipt of command — put the command data into statu for confirmation.

'Solar-B

Hardware command interface

'urpose: Irrespective of MDP CPU status, the secondary power on/off command and others are sent via hardware command interface.

'Solar-B | Hardware status interface for secondary power

pose: ON/OFF status of EIS secondary power relay is periodically monitored a hardware logic circuits.

reference: Solar-B Electrical Design Standards §8-(6) or (7)

'Solar-B | Hardware status interface for important bi-level s

'urpose: Important bi-level status data are periodically monitored by a hardwa logic circuit.

N: Number of "secondary power

M: Number of "H/W status"

vrence: Solar-B Electrical Design Standards §8-(8)

'Solar-B

Counter-plan for Errors

Then some error happens in EIS-CPU due to SEU, does EIS side request anything to MDP ? or does EIS side deal with the error by itself ? Then some error happens in MDP due to SEU, does EIS side request anything to MDP backup system for safety ? or does EIS side deal with the error by itself ?

DP realizes stop of EIS CPU by the following procedure.

MDP sends a status request command and waits for 0.5 sec. When the same procedure is done three times in a condition that status data do not come to MDP, MDP judges that EIS CPU is down.

'his is effective only when the status line is independent of science data line.>

Solar-B Management Plan of Time

data line for image data

f data except for science data, EIS only put counter value at start of data transfer.

'Solar-B

Flare Detection

e following is a baseline of flare detection.

etection of flares is done by XRT.

8 on-chip summation image covering the whole XRT field of view will be use or flare patrol.

he flare patrol image will be taken every .30 sec (TBD).

formation on flare detection is sent to EIS by MDP.

1. Flare detection

2. Flare location in XRT CCD coordinate; X=0-255, Y=0-255 (TBl uration of flare mode TBD

Solar-B

Command to MDP

ASTRO-F type command system (similar to *Yohkoh* system) >

Type Classification	Command Types
Command Block Type	Discrete Command (DC) Block Command (DC+BC++ BC)
Command Grouping	Individual Command Organized Command (OG)
Operation Type	Real-time command Time-tagged command Operation Program (OP) Onboard-triggered command

OP and Onboard-triggered command support only OG to execute.

Solar-B

Command System Block Diagram

Solar-B	Data length of Command

Command Block Type		Maximum data length (bytes)
DC		1
DC+BC++BC	real time OP/OG time-tagged	$ \begin{array}{r} 1 + 252 \\ 1 + 13 \\ 1 + 8 \end{array} $

DC is used for single task such as ON/OFF, START/STOP and ENA/DIS.

BC is used for data transmission such as program load, table upload, and so o

Real-time commands are sent from the ground and are immediately executed.

Time-tagged commands are stored in DHU and executed at a specified time ir a resolution of about 1 sec. 32 commands can be stored in DHU.

sola	ır-B		(OP & OG	
peration Program; a group of time-line commands consisting of OG. 512 (TBD) slots are prepared for OP. Each time line is executed at a time time interval between consecutive two time lines. The unit of t is TBD sec. OP is started at a Kagoshima contact pass.				f OG. 512 (TBD) time executed at a time definition of time tines. The unit of time stact pass.	
rGanized command; One OG has 16 (TBD) command slots. Discrete command or bloc command data is included in each slot. 256 (TBD) OG can be store in DHU. Time interval between two slots in an OG is 62.5 msec.					
Example of OP:		OP:		Example of OG:	
CE	#OG	Interva	ıl	00: 03-DC-11	08: 05-DC-42
00	0	121	NOP	01:	09: 05-BC-12
01	3	32	KSC LOS	02: 03-DC-23	10: 05-BC-45
02	22	85	DSN AOS	03:	11: 05-BC-32
				04:	12:
				05:	13:
				06:	14:
129	255		OP STOP	07:	15: 03-DC-44

|--|

Mechanism & Operation

ıism:	purpose	frequency	direction	angle of or sh
observation	n:			
protect ins increase of focus adju opening of focus adju change slit change fiel	side from dirty environment f stiffness astment f vacuum enclosure stment t/slot ld of view	once/year once/mission once/year once/mission once/mission? once/hour ? once/day ?	ar. Y-axis ar. X-axis [±] Z-axis ar. Y-axis [±] Z-axis ar. X-axis [±] X-axis	180deg/ ~30 deg ±0.5 mm/10 90 deg/2 ±0.5 mm/10 90 deg/1 ±5arcmin/10
observation	:			
scan for rat reset to sta adjust expo change slit/	ster observation art position osure duration slot	once/ 1 sec once/5-10 min once/ 1 sec once/ hour	ar. Y-axis ar. Y-axis ar. Z-axis ar. X-axis	1 arcsec/ 8 arcmin ~60 deg/ 90 deg/

Solar-B

Disturbance Torque (order of estimation)

Disturbance torque during a motion: $T = d (I w)/dt \sim I q (dt)^{-2}$

S/Solar-B | Acceptable Level of Disturbance Torque

from handouts distributed in satellite design meeting held on June 30, 1999