SOLAR – B EIS Radiator Thermal Study MSSL

Preliminary study of radiator positioned mid-way along EIS

- CCD temperature aim: -80°C
- CCD dissipation: 2 x 0.5W
- No other dissipation considered

EIS CONFIGURATION STUDIED

THERMAL ENVIRONMENT and ASSUMPTIONS

- Orbit: 600 x 600 km, *i* = 97.8°, 6pm ascending node.
- Winter Solstice (provisional hot case)
- Spacecraft Sun-pointing
- Total isolation of radiator from structure assumed
- No heat load from camera electronics

EIS Radiator Preliminary Thermal Model (1)

EIS Radiator Preliminary Thermal Model (2)

CONFIGURATIONS ANALYSED

- 1. 190 x 230 mm radiator
- 2. With Earth shield around radiator
- 3. Radiator angled away from spacecraft
- 4. Radiator extensions on +Y and –Z faces
- 5. Additional extensions –Z side of main radiator
- 6. 190 x 230 mm radiator at –Z end of EIS

THERMAL PREDICTIONS

Radiator temperature predictions (max. and min. around orbit):-Note: Model has low heat capacity - true orbital variations will reduce.

Config. 1 (baseline)	-80°C to -12°C	(average -45°C)
Config. 2 (Earth shields)	-70°C to -10°C	(average -40°C)
Config. 3 (angled radiator)	-83°C to -7°C	(average -45°C)
Config. 4 (radiator extensions)	-70°C to -30°C	(average -50°C)
Config. 5 (additional extensions)	-70°C to -30°C	(average -50°C)
Config. 6 (rear radiator)	-65°C to -45°C	(average -55°C)
Comparison: XRT	-75°C to -55°C	(average -65°C)

DISCUSSION

- Current radiator position seems inadequate for -80°C on CCD
- Earth shields and alternative thermal finishes are not effective
- → due to blockage of view factor to Space by rear of EIS and spacecraft

Radiator on rear face of EIS is more effective due to uninterrupted view to Space – does receive more Earthshine & Albedo

→ Optimisation (pointing angle, Earth shields) should reduce temperatures to -65°C average, in line with XRT analysis.

WAY FORWARD

- Optimise current radiator with extensions / active louvres
 - → Unlikely to achieve -80°C
- Heat pipe link to rear radiator
 - ➔ Not enough power to activate heat pipe?
- Peltier (Thermo-electric) cooler and heat pipe to rear radiator
 Power, mass & complexity implications
- Redesign instrument with rear-mounted radiator
- Review -80°C CCD temperature requirement