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Handout: Section 5.2 - Magnetohydrodynamics (MHD) – Equations (Examinable) 

1. Convective Derivative  
 
We need to describe how things change within a moving element of a fluid. The convective 
derivative lets us describe the way things change in a flowing fluid, while using a fixed 
reference frame.  
 
Consider watching a small patch of sky. Clouds may develop in the patch as the water 
condenses out of the air, and will stay there if there is no wind. Clouds may be carried 
through the patch if there is a wind. Or both could happen; clouds may be carried through it 
from outside, while being added to due to cloud formation in the patch.  
 
We describe change in a parameter A which goes on in a fixed region of space (whether or not 

the fluid is moving) using 
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We describe change in A due to the fluid element entering or leaving a region where A is 
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of the fluid flow velocity u. This can be generalised to three dimensions as (u.∇)A. 
 
So the total rate of change of a scalar A in a fluid element in the flowing fluid is 
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and the rate of change of a vector A in a fluid element in the flowing fluid is 
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The 
dt
dA  term is the convective derivative, also sometimes written 

Dt
DA . 

 

2. Pressure Tensor 
 
The simplest form of pressure is isotropic pressure – the same in all directions. However, in a 
magnetised plasma, pressure may be different in the plane perpendicular to the field 
compared to the direction along the field (due to constraints on particle motion across the 
magnetic field). In principle, one could have shear stresses too, which give viscosity and 
oppose shear by transferring momentum in directions other than the direction of the 
momentum. 
 
The pressure tensor represents pressure as a matrix. The leading diagonal terms contain the 
familiar pressure due to momentum flux in the direction of the momentum. The off-diagonal 
terms contain the less familiar shear stresses. 
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If we define one direction along the field, and the other two in the perpendicular plane, we 
can write the general pressure tensor as P = nmvv which, if there are no off-diagonal terms, is  
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where p⊥ equals p|| in an isotropic plasma. It is usually more realistic to consider 
perpendicular and parallel components, since the fluid behaviour is only properly enforced in 
the perpendicular plane. Usually we can ignore off-diagonal terms. 
 
For an anisotropic pressure, we define two temperatures, using the ideal gas law 
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3.  Mass Conservation/Continuity Equation 
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This tells us that the particle number density of the fluid in a region can only change if some 
of the fluid enters or leaves the region. For non-relativistic speeds (so that the particle masses 
are fixed) the equation also says that mass is conserved.  

 
(Remember that Gauss’ Theorem says that ( ) ∫∫ =∇ v.dSv ndVn. where the LHS is the integral 
of all elements dV in a volume V, enclosed by a surface S, and the RHS is the integral over 
all the enclosing surface elements dS.) 
 

4. Charge Conservation/ Field Aligned Currents 
 
The continuity equation also implies charge conservation; 
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where ρq = qn, and one can express as: 
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If the time variation of the plasma conditions within a volume is small enough to ignore, 

so 0=
∂

∂

t
qρ , then ||jjj ..thatso0. −∇=∇=∇ ⊥ .  In other words, currents must always close, so 

if there is a divergence of current in a plane perpendicular to the field, there must be field-
aligned currents.  
 
 

5.  Equation of Motion 
 
This equation tells us that momentum is conserved.  It has the form ma = F, such that the 
terms on the RHS represent forces: 
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The LHS is convective derivative of momentum.  Note that ρ = nm, the mass density, while 
the term ρq represents the charge density.  However as a plasma is quasi-neutral we can 
generally ignore the ρqE term.  The term P is the pressure tensor and j is the electric current 
density.  Note that if we are dealing with a situation in which other forces are acting (e.g. 
gravity, see solar wind section later), then we must also include these forces on the RHS. 
 

6. Generalized Ohm’s Law 
 
This equation tells us what can alter j. 
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The RHS terms are: 
 
ηj   resistive term  (like the ordinary Ohms law) 
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In the special case of “ideal MHD”, the resistivity vanishes, η = 0, so we lose the first term on 
the RHS. Note that in this case the fluid is a perfect conductor of electrical current.  The 
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restrictions on long length and timescales relating to applicability of MHD means that the 3rd 
and 4th terms are often small enough to be neglected.  Making the additional assumption that 
currents perpendicular to the field are weak when ideal MHD is valid, we arrive at the 
conclusion: 

E + v × B = 0 
 

This corresponds to “frozen-in flow” (see lecture notes). Despite all these restrictions, the 
above equation is often a good approximation to reality for a space plasma. 
 

7.  Equation of State 
 
In order to have a complete set of equations, we need to relate the pressure temperature and 
density.  The simplest assumption is to use the ideal gas relation p = n kBT.  The assumption 
of constant temperature is often valid for very slowly changing plasma conditions, in which 
case P ∝ n. 
 
More rapid changes may justify the adiabatic assumption, in which no heat is exchanged 
between fluid elements. Then we may have P ∝ (mn)γ = ργ where γ can take various values 
according to the situation, but is often set at 5/3. The index γ is known as the adiabatic index, 
which is the ratio of specific heats.  The MHD adiabatic equation of state is written: 
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More rigorous (and thus more complicated) versions have sources and sinks of energy (heat 
flux, radiative terms, ohmic heating, depending on application) on the RHS. 
 
 
8. Maxwells Equations 
 
Note that the equations above may include a number of electromagnetic terms (j, B, E, etc.).  
Hence applying MHD to a given situation often requires the use of Maxwells equations to 
achieve full closure of the set of equations.  Recall: 
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where E is the electric field vector, B the magnetic field vector, c2=(εoμo)-1, ρq is the charge 
density, and j is the current density. 
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