Average properties of the Solar Wind at Earth Orbit

 The solar wind is the extension of solar corona into interplanetary space:

```
Density ~ 7cm<sup>-3</sup> (~ 4% He<sup>2+</sup>) Speed ~ 450 km s<sup>-1</sup> Proton Temp. ~ 1.2x10<sup>5</sup> K Electron Temp. ~1.4x10<sup>5</sup> K B-Field Strength ~ 7 nT M_S ~ M_A ~ 2-10 \lambda_{MFP} ~ 1 AU
```


Average IMF Strength and Direction

At:	Angle	Strength:
Mercury	21°	35 nT
Earth	45°	7 nT
Mars	56°	4 nT
Jupiter	80°	1 nT
Neptune	88°	0.2 nT

6.3 Real Solar Wind Structures

- Large Scale:
 - Heliospheric Current Sheet and Sector Structure
 - Fast/Slow Streams
 - Corotating Iteraction regions (CIRs)
 - Coronal Mass Ejections
 - Magnetic Clouds
- Small Scale:
 - Waves and Turbulence
 - Discontinuities
 - Shocks

(See also last part of Chapter 4 of Kivelson and Russell.)

a) Origin of the Heliospheric Current Sheet

Sector Structure

The current sheet separating magnetic field from N and S poles of Sun becomes warped – hence sometimes Earth is above the current sheet, at other times below – we see a sector structure in the B-field.

Actually more complicated still...

b) 2-speed Solar Wind

Above plot shows solar wind speed measured during an orbit over the poles of the Sun – solar wind emitted from polar coronal holes is much faster, averaging 800 km s⁻¹.

Large-Scale Magnetic Structure of the Outer Corona

Real Coronal Structure

- The real Sun is a complicated and disordered mix of open and closed field lines;
- 'Coronal Holes' appear dark and are the origin of fast solar wind
- Brighter regions, indicating higher plasma density, are the source of slow solar winds

c) Co-rotating interaction regions

Fast solar wind streams catching up with slower streams cannot mix with the slower stream (frozen-out) Hence the slow stream is compressed and a shock may form (see next section). Slow wind behind the fast wind may cause a rarefaction region of reduced density. These structures may persist for many months and are thus observed every solar rotation (i.e. they corotate with the Sun)

d) Solar cycle effects

- The solar field switches every ~11 years
- The solar wind and IMF properties are particularly variable during the switch
 - Solar Maximum
- More regular in between times
 - Solar Minimum

(c.f. sunspot numbers as a measure of the activity)

e) Coronal Mass Ejections (CMEs)

- Regions of closed solar magnetic field lines (Helmet streamers are occasionally explosively released as a CME (~10¹² kg);
- These travel out through interplanetary space and are often associated with 'Magnetic clouds';
- Those passing Earth may cause magnetic storms (see later).

CMEs/Magnetic Clouds

CMEs/Magnetic Clouds

- CMEs/magnetic clouds
- Shocks:

Recall that plasmas of different sources cannot mix (frozen in to their own magnetic fields) – so if one fast $(M_S, M_A >> 1)$ moving plasma runs into a slower moving plasma a shock must form.

(Will cover in more detail in Section 7 shortly)

f) Heliopause and Termination Shock

