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Abstract

A novel technique for multi-scale smoothing of a free-form 3-D surface
is presented. Complete triangulated models of 3-D objects are constructed
(through fusion of range images) and are then described at multiple scales.
This is achieved by convolving local parametrizations of the surface with 2-D
Gaussian filters iteratively. Our method for local parametrization makes use
of semigeodesic or goedesic polar coordinates as a natural and efficient way
of sampling the local surface shape. The smoothing eliminates surface noise
and small surface detail gradually. Our technique for 3-D multi-scale surface
smoothing is independent of the underlying triangulation. It is also argued
that the proposed technique is preferrable tovolumetric smoothingor level
set methodssince it is applicable to incomplete surface data which occurs
during occlusion.

1 Introduction

This paper introduces a new technique for multi-scale shape description of free-form 3-D
surfaces represented by polygonal or triangular meshes. Complete 3-D models of test
objects have been used in our experiments. Such models can be constructed through
automatic fusion of range images of the object obtained from different viewpoints [4].

Multi-scale descriptions have become very common in computer vision since they of-
fer added robustness with respect to noise and object detail as well as provide for more
efficient processing. The multi-scale technique proposed here can be considered a gen-
eralization of earlier multi-scale representation theories proposed for 2-D contours [8, 9]
and space curves [7]. However, the theoretical issues are significantly more challenging
when working on free-form 3D surfaces.

In our approach, diffusion of the surface is achieved through convolutions of local
parametrizations of the surface with a 2-D Gaussian filter.Semigeodesic coordinates[2]
are utilized as a natural and efficient way of locally parametrizing surface shape. The
most important advantage of our method is that unlike other diffusion techniques such
as volumetric diffusion [6, 5] or level set methods [12], it haslocal supportand is there-
fore applicable to partial data corresponding to surface-segments. This property makes it
suitable for object recognition applications in presence of occlusions.
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The organization of this paper is as follows. Section 2 gives a brief overview of pre-
vious work on 3-D object representations including the disadvantage(s) of each method.
Section 3 describes the relevant theory from differential geometry and explains how a
multi-scale shape description can be computed for a free-form 3-D surface. Both semi-
geodesic and geodesic polar coordinates are covered. Section 4 covers implementation
issues encountered when adapting semigeodesic coordinates and geodesic polar coor-
dinates to 3-D triangular meshes. Section 5 presents diffusion results and discussion.
Section 6 contains the concluding remarks.

2 Literature Survey

Polyhedral approximations[1] fit a polyhedral object with vertices and relatively large
flat faces to a 3-D object. Their disadvantage is that the choice of vertices can be quite
arbitrary which renders the representation not robust. Smooth 3-D splines [14] can also
be fitted to 3-D objects. Their shortcomings are that the choice of knot points is again
arbitrary and that the spline parameters are not invariant.Generalized conesor cylinders
[13] as well asgeons[10] approximate a 3-D object using globally parametrized math-
ematical models, but they are not applicable to detailed free-form objects.Multi-view
representations [11] are based on a large number of views of a 3-D object obtained from
different viewpoints, but difficulties can arise when a non-standard view is encountered.
In volumetric diffusion[5] or level set methods [12], an object is treated as a filled area
or volume. The object is then blurred by subjecting it to the diffusion equation. The
boundary of each blurred object can then be defined by applying the Laplacian operator
to the smoothed area or volume. The major shortcoming of these approaches is lack of
local support. In other words, the entire object data must be available. This problem
makes them unsuitable for object recognition in presence of occlusion. A form of 3-D
surface smoothing has been carried out in [15, 16] but this method has drawbacks since it
is based on weighted averaging using neighboring vertices and is therefore dependent on
the underlying triangulation.

3 Semigeodesic and Geodesic Polar Parametrization on
a 3-D Surface

A crucial property of 2-D contours and space curves (or 3-D contours) is that they can
be parametrized globally using the arclength parameter. However, free-form 3-D sur-
faces are more complex. As a result, no global coordinate system exists on a free-form
3-D surface which could yield a natural parametrization of that surface. Indeed, studies of
local properties of 3-D surfaces are carried out in differential geometry using local coordi-
nate systems calledcurvilinear coordinatesor Gaussian coordinates[2]. Each system of
curvilinear coordinates is introduced on a patch of a regular surface referred to as asimple
sheet. A simple sheet of a surface is obtained from a rectangle by stretching, squeezing,
and bending but without tearing or gluing together. Given a parametric representationr
= r (u,v) on a local patch, the values of the parametersu andv determine the position of
each point on that patch.
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3.1 Geodesic Lines

Before the semigeodesic and geodesic polar coordinates can be described, it is necessary
to define geodesic lines on a regular 3-D surface. The following definitions are useful
[2, 3]:

Definition. A geodesic line or a geodesic of a surface is a curve whosegeodesic
curvatureis zero at every point. Geodesic curvature is the magnitude of thevector of
geodesic curvature.

Definition. The vector of geodesic curvature of a curveC lying on a surfaceS at
a pointP onC is obtained by projecting thecurvature vectorof C atP on the tangent
plane toS atP .

Definition. The curvature vector of a curveC at pointP is of the same direction as
the principal normal vector atP and of length equal to the curvature of the curve atP .

Definition. The principal normal vector of a curveC at pointP is perpendicular to
C atP and lies in theosculating planeatP . The plane with the highest possible order of
contact with the curveC at pointP is called the osculating plane atP .

The following crucial property of geodesic lines is actually utilized to construct geodesics
on 3-D triangular meshes:

Minimal property of geodesics:An arc of a geodesic lineC passing through a point
P and lying entirely in a sufficiently small neighborhood of a pointP of a surfaceS
of classC2 is the shortest join ofP with any other point ofC by a curve lying in the
neighborhood.

3.2 Semigeodesic Coordinates

Semigeodesic coordinates can be constructed in the following way at a pointP on a
surfaceS of classC2:

� Choose a geodesic lineC through pointP in an arbitrary direction.

� Denote byv the arclength parameter onC, such thatP corresponds to the value
v = 0.

� Take further through every point ofC the geodesic lineL perpendicular toC at the
corresponding point.

� Denote byu the arclength parameter onL.

The two parametersu andv determine the position of each point in the domain swept
out by these geodesic lines. It can be shown that in a sufficiently small neighborhood of
the pointP , semigeodesic coordinates can always serve as curvilinear coordinates in a
regular parametric representation ofS [2]. The orthogonal cartesian coordinates in the
plane are a special case of semigeodesic coordinates on a flat surface.

3.3 Geodesic Polar Coordinates

Geodesic Polar coordinates can be constructed at a pointP on a surfaceS of classC2 in
the following way:

� Choose an arbitrary directionw onS at pointP .
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� Take all geodesic lines emanating from pointP .

� Denote byv the arclength parameter on each geodesic in previous step.

� Denote byu the angle betweenw and the tangent vector of each geodesic in step 2
at pointP .

Again the two parametersu andv determine the position of each point in the domain
swept out by these geodesic lines. It can be shown that in a sufficiently small neighbor-
hood of pointP (with P itself deleted), geodesic polar coordinates can always serve as
curvilinear coordinates. PointP is a singular point of this parametrization since its coor-
dinates are not uniquely defined. The polar coordinates in the plane are a special case of
geodesic polar coordinates on a flat surface.

3.4 Gaussian Smoothing of a 3-D surface

The procedures outlined above can be followed to construct semigeodesic coordinates or
geodesic polar coordinates at every point of a 3-D surfaceS. In case of semigeodesic
coordinates, local parametrization yields at each pointP :

r(u; v) = (x(u; v); y(u; v); z(u; v)):

The new location of pointP is given by:

R(u; v; �) = (X (u; v; �); Y(u; v; �); Z(u; v; �))

where
X (u; v; �) = x(u; v) 
 G(u; v; �)

Y(u; v; �) = y(u; v) 
 G(u; v; �)

Z(u; v; �) = z(u; v) 
 G(u; v; �)

G(u; v; �) =
1

2��2
e�

(u2+v2)

2�2

and
 denotes convolution. In case of geodesic polar coordinates, the Gaussian func-
tion becomes one-dimensional. As a result, each of the 2-D convolutions above can be
expressed as a series of 1-D convolutions.

In both cases, this process is repeated at each point ofS and the new point positions
after filtering define the smoothed surface. Since the coordinates constructed are valid
locally, the Gaussian filters always have� = 1.

3.5 Multi-Scale Description of a 3-D surface via diffusion

In order to achieve multi-scale descriptions of a 3-D surfaceS, it is smoothed according
to the process described in section 3.4. The smoothed surface is then considered as the
input to the next stage of smoothing. This procedure is then iterated many times to obtain
multi-scale descriptions ofS. This process is equivalent to diffusion smoothing

@S

@t
= H n
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since the Gaussian function satisfies the heat equation. In the equation above,t is time,
H is mean curvature, andn is the surface normal vector.t can be regarded as the number
of iterations.

4 Implementation on a 3-D Triangular Mesh

The theory explained in the previous section must be adapted to a 3-D triangular mesh.
Both semigeodesic and geodesic polar coordinates involve construction of geodesic lines.
Clearly the segment of a geodesic that lies on any given triangle is a straight line. Two
situations must be considered:

� Extension of a geodesic when it intersects a triangle edge

� Extension of a geodesic when it intersects a triangle vertex

Theorem 1 addresses the first situation.
Theorem 1. Suppose a geodesic intersects an edgee shared by trianglesT1 andT2.

The extension of this geodesic beyonde is obtained by rotatingT2 aboute so that it
becomes co-planar withT1, extending the geodesic in a straight line onT2, and rotating
T2 aboute back to its original position.

Proof: Assume by contradiction that the procedure above does not construct a geodesic.
Let g1 be the segment of the geodesic onT1 and letg2 be the segment of the geodesic
on T2. RotateT2 aboute so that it becomes coplanar withT1. By assumption,g1 and
g2 will not be co-linear. Hence, for a pointP1 on g1 and a pointP2 on g2, there will
be a shorter path fromP1 to P2. This is the straight line joiningP1 to P2. Now ro-
tateT2 back to its original position. The length of the path just constructed remains
the same, so it will still be shorter than the geodesic fromP1 to P2. A contradiction
has been reached. Therefore the procedure described correctly constructs a geodesic.
2

Note that the construction above extends to several triangles as long as they remain in
a local neighborhood. Theorem 2 addresses the second case.

Theorem 2.Suppose a geodesic arrives at a vertexV of the mesh. Define the normal
vectorn at V as the average of the surface normals of all the triangles incident onV

weighted by the incident angle. LetQ be the plane formed by the geodesic incident onV

andn. The extension of this geodesic beyondV is found by intersectingQ with the mesh.
Proof: The curvature vectork of the path obtained by the procedure above lies inQ.

k is also perpendicular to tangent planeT (which is defined as perpendicular ton atV ).
The vector of geodesic curvature of the path is obtained by projectingk on the tangent
plane. It follows that geodesic curvature of the path is zero. Hence the path is a geodesic
line. 2

4.1 Implementation of semigeodesic coordinates

Semigeodesic coordinates are constructed at each vertex of the mesh which becomes the
local origin. The following procedure is employed:

� Construct a geodesic from the origin in an arbitrary direction such as the direction
of one of the incident edges.
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(a) A 3-D triangular mesh

Arbitrary Geodesic Line

Second family of Lines

B

Where "o"s are the semigeodesic coordinates and "B" is the current vertex.

(b) Semigeodesic coordinates

Figure 1: A triangular mesh and semigeodesic coordinates in a local area

� Construct the other half of that geodesic by extending it through the origin in the
reverse direction using the procedure outlined in theorem 2.

� Parametrize that geodesic by the arclength parameter at regular intervals to obtain
a sequence of sample points.

� At each sample point on the first geodesic, construct a perpendicular geodesic and
extend it in both directions.

� Parametrize each of the geodesics constructed in the previous step by the arclength
parameter at regular intervals.

Figure 1 shows a triangular mesh and an example of semigeodesic coordinates.

4.2 Implementation of geodesic polar coordinates

Geodesic polar coordinates are also constructed at each vertex of the mesh which again
becomes the local origin. The following procedure is used:

� Construct a geodesic from the origin in an arbitrary direction such as the direction
of one of the incident edges.

� LetN be the normal plane at the origin defined by the geodesic constructed in the
previous step and the normal vectorn (defined in theorem 2).

� RotateN aboutn by angle� and intersect it with the mesh to obtain the next
geodesic emanating from the origin.
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� Repeat the previous step untilN is back in its original position.

� Parametrize each of the constructed geodesics by the arclength parameter at regular
intervals to obtain a sequence of sample points on each geodesic.

5 Results and Discussion

The smoothing routines were implemented entirely in C++. The first test object was a
cube with 98 vertices and 192 triangles. The smoothing results using semigeodesic coor-
dinates (with filter size equal to 9) are shown in Figure 2 (top row). The original cube is
changed to a sphere after five iterations. The experiment was also repeated using geodesic
polar coordinates (with 9 polar lines), and the smoothing results are shown in Figure 2
(bottom row). These results indicate that smoothing using semigeodesic coordinates and
geodesic polar coordinates produce similar results. The second test object was a foot with
2898 triangles and 1451 vertices. The smoothing results are shown in Figure 3. The third
test object was a chair with 3788 triangles and 1894 vertices as shown in Figure 4. Figure
5 shows the fourth test object which was a telephone handset with 11124 tringles and
5564 vertices. These examples show that our technique is effective in eliminating surface
noise as well as removing surface detail. The result is gradual simplification of object
shape. Animation of surface diffusion can be observed at the web site:

http://www.ee.surrey.ac.uk/Research/VSSP/demos/css3d/index.html

6 Conclusions

A novel technique for multi-scale smoothing of a free-form triangulated 3-D surface
was presented. The method was independent of the underlying triangulation. This was
achieved by convolving local parametrizations of the surface with 2-D Gaussian filters
iteratively. Our method for local parametrization made use of semigeodesic and geodesic
polar coordinates as natural and efficient ways of sampling the local surface shape. Smooth-
ing techniques using semigeodesic coordinates and geodesic polar coordinates produce
similar results. The smoothing eliminated the surface noise and small surface detail grad-
ually, and resulted in gradual simplification of object shape. Our approach is preferrable
to volumetric smoothingor level set methodssince it is applicable to incomplete surface
data which occurs during occlusion.
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(a) 1 iteration (b) 5 iterations

Semigeodesic coordinates

(c) 1 iteration (d) 5 iterations

Geodesic Polar coordinates

Figure 2: Smoothing of the Cube
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(a) Original (b) 20 iterations

(c) 40 iterations (d) 100 iterations

Figure 3: Diffusion of the Foot
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(a) Original (b) 4 iterations

Figure 4: Smoothing of the Chair

(a) Original (b) 3 iterations

(c) 18 iterations (d) 31 iterations

Figure 5: Diffusion of the telephone handset


