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Abstract

The recognition of free-form 3-D objects using multi-scale features
recovered from 3-D models, and based on the geometric hashing al-
gorithm and global veri�cation is presented. The feature points on
the object are detected by smoothing its surface after construction of
semigeodesic coordinates at each point (mesh vertex). This technique
is the generalisation of the CSS method which is a powerful shape de-
scriptor expected to be in the MPEG-7 standard. Smoothing is used
to remove noise and to select multi-scale feature points to add to the
eÆciency and robustness of the system. The local maxima of Gaussian
and mean curvatures are selected as feature points. Furthermore the
torsion maxima of the zero-crossing contours of Gaussian and mean
curvatures are also selected as feature points. Recognition results are
demonstrated for rotated and scaled as well as partially occluded ob-
jects. In order to con�rm the match, 3D translation, rotation and
scaling parameters are used for veri�cation and results indicate that
our technique is invariant to those transformations.

1 Introduction

Object recognition is a major task in computer vision. Surface curvature provides
a unique view-point invariant description of local surface shape. Di�erential geom-
etry [4] provides several measures of curvature, which include Gaussian and mean
curvatures. In this paper the recognition of free-form 3-D objects using multi-scale
features recovered from 3-D models, and based on the geometric hashing technique
and global veri�cation is addressed. The model information is indexed into a hash-
table using minimal transformation invariant features. The feature points on the
object are detected by convolving local parametrisations of the surface with 2-D
Gaussian �lters [10, 18]. The recognition of a partially occluded object in a scene
amounts to the discovery of a match between a subset of the scene interest features
and a subset of the interest features of some model object.






The organisation of this paper is as follows. Section 2 gives a brief overview of
previous work on 3-D object representation, recognition and matching. Section 3
reviews the relevant theory from di�erential geometry and explains how a multi-
scale shape description can be computed for a free-form 3-D surface. Section 4
explains curvature estimation and detection of local maxima. Section 5 describes
our system for robust 3-D model-based object recognition. Section 6 presents
results and discussion. Section 7 contains the concluding remarks.

2 Literature Survey

This section presents a survey of previous work in representation and recognition
of 3-D surfaces. Sinha and Jain [13] provide an overview of geometry based rep-
resentations derived from range data of objects [2]. Volumetric representations
rely on representing objects in terms of generalised cylinders, superquadrics, set-
theoric combinations of volume primitives as in constructive solid geometry (CSG)
or spatial occupancy [14, 1, 11]. However, it may not be possible to express ob-
jects with free-form surfaces using for example, superquadric primitives. Although
there are several methods available to model a surface, triangular meshes are the
simplest and most e�ective form of polygons to cover a free-form surface. The
common types of polygonal meshes include the triangular mesh [5] and the four
sided spline patches. Triangular meshes have been utilised in our work.

In volumetric di�usion [6] or level set methods [12], an object is treated as a
�lled area or volume. The object is then blurred by subjecting it to the di�usion
equation. The boundary of each blurred object can then be de�ned by applying
the Laplacian operator to the smoothed area or volume. The major shortcoming
of these approaches is lack of local support. In other words, the entire object data
must be available. This problem makes them unsuitable for object recognition
in presence of occlusion. A form of 3-D surface smoothing has been carried out
in [16] but this method has drawbacks since it is based on weighted averaging using
neighbouring vertices and is therefore dependent on the underlying triangulation.
The smoothing of 3-D surfaces is a result of the di�usion process [17].

A number of matching topics have been recognised by researchers as impor-
tant in 3-D object recognition [3]. These are related to object shape complexity,
rigid and exible objects and occlusion. The success of existing object recognition
systems is because of the restrictions they impose on the classes of geometric ob-
jects. However, few systems can handle arbitrary surfaces with very few restrictive
assumptions about their geometric shapes.

Object recognition is achieved by matching features derived from the scene
with stored object model representations. EÆcient algorithms were developed for
the recognition of at rigid objects based on the Geometric Hashing technique
in [7]. The technique was also extended to the recognition of arbitrary rigid 3-D
objects from single 2-D images [8]. Stein and Medioni [15] and Flynn and Jain [3]
have also employed geometric hashing for 3-D object recognition. In a Geometric
Hashing technique the model information is indexed into a hash table using mini-
mal transformation feature points. This technique determines for a given scene's
minimal feature set a corresponding feature set on one of the models, by consid-
ering only the other scene features which vote for the correct interpretation. The






advantages of the Geometric Hashing technique over the others is the independent
processing of the model and scene information as well as its ability to process all
the model objects simultaneously, and its quick recognition time.

3 Semigeodesic Parametrisation

Free-form 3-D surfaces are complex hence, no global coordinate system exists on
these surfaces which could yield a natural parametrisation of that surface. Studies
of local properties of 3-D surfaces are carried out in di�erential geometry using
local coordinate systems called curvilinear coordinates or Gaussian coordinates

[4]. Each system of curvilinear coordinates is introduced on a patch of a regular
surface referred to as a simple sheet. A simple sheet of a surface is obtained from
a rectangle by stretching, squeezing, and bending but without tearing or gluing
together. Given a parametric representation r = r(u,v) on a local patch, the values
of the parameters u and v determine the position of each point on that patch.
Construction and implementation of semigeodesic coordinates in our technique is
described in [10, 19].

4 Curvature Estimation

This section presents techniques for accurate estimation of Gaussian and mean
curvatures at multiple scales on smoothed free-form 3-D surfaces. Di�erential ge-
ometry provides several measures of curvature, which include Gaussian and mean
curvatures [4]. Consider a local parametric representation of a 3-D surface

r = r(u; v) = (x(u; v); y(u; v); z(u; v))

Gaussian curvature K exists at regular points of a surface of class C2. When
r(u; v) corresponds to semigeodesic coordinates, K is given by:

K =
buubvv � buv

2

x2v + y2v + z2v
(1)

where subscripts denote partial derivatives, and

bij =
Axij +Byij + Czijp

A2 +B2 + C2

where each of i and j can be either u or v, and

A = yuzv � zuyv B = xvzu � zvxu C = xuyv � yuxv :

Mean curvature H also exists at regular points of a surface of class C2. Again,
when r(u; v) corresponds to semigeodesic coordinates, H is given by:

H =
bvv + (x2v + y2v + z2v)buu

2(x2v + y2v + z2v)
(2)

Gaussian and mean curvatures are invariant to arbitrary transformation of the
(u,v) parameters as well as rotations and translations of the surface. On smoothed






surfaces of 3-D objects, the procedure for estimating the Gaussian and mean cur-
vatures are as follows. For each point p(x(u; v); y(u; v); z(u; v)) of the surface, the
corresponding local neighbourhood data is convolved with the partial derivatives
of the Gaussian function G(u; v; �). Finally, curvature values on a 3-D surface are
estimated by substituting these values into equations (1) and (2), respectively.

4.1 Local Curvature Maxima

Local maxima of Gaussian and mean curvatures are signi�cant and robust feature
points on smoothed surfaces since noise has been eliminated from those surfaces.
The process of recovery of the local maxima is identical for Gaussian and mean
curvatures. Every vertex V of the smoothed surface is examined in turn. The
neighbours of V are de�ned as vertices which are connected to V by an edge. If
the curvature value of V is higher than the curvature values of all its neighbours, V
is marked as a local maximum of curvature. Curvature maxima can be utilised by
later processes for robust surface matching and object recognition with occlusion.

4.2 Torsion Maxima of Curvature Zero-Crossing Contours

This section briey reviews the computation of torsion. Torsion is the instan-
taneous rate of change of the osculating plane with respect to the arc length
parameter. The osculating plane at a point P is de�ned to be the plane with the
highest order of contact with the curve at P [4]. The set of points of a space curve
are the values of a continuous, vector-valued, locally one-to-one function

r(u) = (x(u); y(u); z(u))

where x(u), y(u) and z(u) are the components of r(u), and u is a function of arc
length of the curve. In order to compute torsion � at each point of the curve, it
is then expressed in terms of the derivatives of x(u), y(u) and z(u). In case of an
arbitrary parametrisation, torsion is given by,

� =
_x(�y�z � �z�y)� _y(�x�z � �z�x) + _z(�x�y � �y�x)

( _y�z � _z�y)2 + ( _z�x� _x�x)2 + ( _x�y � _y�x)2
(3)

where _x(u), �x(u) and �x(u) are the �rst, second and third derivatives of x(u)
respectively.

5 Robust Free-Form 3-D Object Recognition

The geometric hashing technique for model based object recognition was intro-
duced by Lamdan and Wolfson [7, 8]. Stein and Medioni [15] as well as Flynn and
Jain [3] have also employed geometric hashing for 3-D object recognition. Our
3-D object recognition system employs a version of the geometric hashing method
followed by global veri�cation to robustly recognise 3-D objects.






5.1 Geometric Hashing

The matching stage of the algorithm uses the hash table prepared in the o�-line
stage. Given a scene of feature points, one tries to match the measurements taken
at scene points to those memorised in the hash table. On smoothed surfaces of
3-D objects, the procedure for indexing data into the hash table is as follows. For
each 3-D object in the database:

1. The local maxima of Gaussian curvature are selected as feature points. Fur-
thermore, local maxima of mean curvature and the torsion maxima of the
zero-crossing contours of Gaussian and mean curvatures are also selected as
feature points.

2. Choose an arbitrary ordered triplet of non-collinear points A, B and C to
form a triangle ABC. Denote the curvature values of points A, B and C

by ka, kb and kc, and the edge lengths AB, BC and AC as d1, d2 and d3,
respectively, see Figure 1.
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Figure 1: Triplet of non-collinear points A, B and C

Select the maximum curvature value and edge length. Let ka and d1 be
maximum curvature value and edge length, then calculate the indexed value
IV for the hash table as,

IV =
ka

kb

ka

kc

d2 + d3

d1
(4)

3. Go back to step (2) and repeat the procedure for di�erent triplets of feature
points. Note that some of these new selected points may have already been
chosen in previous stages.

We now have produced a hash table with all the data indexed into its memory
from a given database. Given a scene of feature points from a 3-D object,
we try to match the index value IV as well as the individual ratios to those
memorised in the hash table. Notice that the input 3-D object can either be
complete or incomplete. Thus, given a 3-D object in a scene, the matching
procedure is as follows:

4. Repeat steps (1) to (3) above, and then for each indexed value IV check
the appropriate entry in the hash-table. Tally a vote for each model which
appears at that location.






5. If several objects score large number of votes close to each other, then the
most likely candidate will be chosen using global veri�cation applied at next
stage.

The voting is done simultaneously for all models in the hash table. The overall
recognition time is dependent on the number of feature points in the scene. Our
aim is to signi�cantly reduce the number of feature points that are due to noise.
This is achieved through the use of multi-scale feature points or feature points
which survive a few iterations of smoothing.

5.2 Global Veri�cation

In general the voting scheme may yield more than one candidate solution with
very close scores from the geometric hashing stage. In this case we use a threshold
to select the most likely models.

From the 3 points of the scene model selected for matching, as discussed in the
previous section, another point is also determined which is the centre of gravity of
all 3 points in the space. Let P1(x1p; y1p; z1p), P2(x2p; y2p; z2p) and P3(x3p; y3p; z3p)
be the 3 non-collinear points selected from the model object and P4(x4p; y4p; z4p)
be a point in the 3-D space which is the centre of gravity of P1, P2 and P3. We
then form a plane P in the space from all of these points. The same procedure
is also applied to the object in the scene. Let Q1(x1q ; y1q; z1q), Q2(x2q ; y2q; z2q),
Q3(x3q ; y3q ; z3q) and Q4(x4q ; y4q; z4q) be the points in the 3-D space. Point Q4

is the centre of gravity of points Q1, Q2 and Q3, thus a plane Q is also formed.
We linearise the problem to simplify solution, hence, the linear equations for the
transformation, mapping model points to scene points are given by [9],

2
664

x1p y1p z1p 1
x2p y2p z2p 1
x3p y3p z3p 1
x4p y4p z4p 1

3
775 :

2
664

a e m

b f n

c g p

d h q

3
775 =

2
664

x1q y1q z1q
x2q y2q z2q
x3q y3q z3q
x4q y4q z4q

3
775 (5)

Note that this approach is employed in order to obtain a quick and approximate
solution which is suÆcient for veri�cation. From the set of linear equations (5), one
can solve for the twelve parameters a, b, c, d, e, f , g, h, m, n, p and q. In order
to verify match, 3D translation, rotation and scaling will be used to determine
global consistency. The translation parameters are (d, h, q). Let , � and � be
the angles in the x, y and z directions for the rotation of the plane P in 3D space.
The 3D rotation matrices about x-axis, y-axis and z-axis denoted Rx(), Ry(�)
and Rz(�), respectively, are given by

Rx() =

2
4

1 0 0
0 cos �sin
0 sin cos

3
5 (6)

Ry(�) =

2
4

cos� 0 sin�

0 1 0
�sin� 0 cos�

3
5 (7)






Rz(�) =

2
4

cos� �sin� 0
sin� cos� 0
0 0 1

3
5 (8)

The columns (and the rows) of matrices Rx(), Ry(�) and Rz(�) are mutually
perpendicular unit vectors and they have determinant of 1, so they are orthogonal.
Therefore the rotation parameters (, �, �) can be obtained from products of
Rz(�).Ry(�).Rx() and also the solution of equation (5),

2
66664

a

e

m

n

p

3
77775
=

2
66664

cos� cos�

sin� cos�

�sin�
cos� sin

cos� cos

3
77775

(9)

For the scaling factor <, the distances from the centre of gravity points P4 and
Q4 to their corresponding 3 points are measured and the shortest distances for
each object are selected. Let r1 and r2 be the shortest distances selected from the
model object and the scene object, then their ratio is the scaling factor <.

< =
r1

r2

A number of model objects with close high scores are selected for the global ver-
i�cation stage. The hash table yields many candidate matches for each selected
model. For each of these candidates, seven global transform parameters are esti-
mated, using the procedure described earlier. The candidates are compared and if
their corresponding parameters are compatible, they are clustered together. The
largest cluster then indicates the largest group of globally consistent matches for
each model. The model object with the largest cluster is then chosen as the most
likely object present in the scene.

6 Results and Discussion

The smoothing routines were implemented entirely in C++. Each iteration of
smoothing of a surface with 1000 vertices takes about 0.5 second of CPU time
on an UltraSparc 170E. The di�usion and curvature estimation results for 3-D
surfaces were given in [10, 18]. Animation of surface di�usion as well as feature
recovery can be observed at our web site:

http://www.ee.surrey.ac.uk/Research/VSSP/demos/css3d/

This section presents the matching results of the system applied to free-form
3-D surfaces in an object database. There are 20 di�erent objects in our database.
All of those are shown in Figure 2. In most cases, the data corresponds to real
objects.

The �rst experiment consisted of applying arbitrary amounts of scaling and 3-D
rotation to the database objects, and to determine whether they can be recognised
correctly by the system. All objects were recognised correctly by the system. In
the �rst stage, geometric hashing was applied to the input object. If one of the






(a) Cube (b) Brick (c) Foot (d) Phone

(e) Chair (f) Cow (g) Dinosaur (h) Rabbit

(i) Head (j) Torus (k) Concave (l) Convex

(m) Teapot (n) Hat (o) Man (p) Station

(q) Spoon (r) Spatula (s) Roller (t) Leg

Figure 2: Free-form 3-D objects used for matching experiments






(a) Kitchen-ware scene (b) Bull-rider scene (c) Space-station scene

Figure 3: Three scenes with extracted features

modelsM received a vote count that was substantially higher than the vote counts
for all other objects, then M was selected as the correct object and the system
terminated. Otherwise, two or more models received high vote counts that were
relatively similar. In this case, the system applied global veri�cation only to the
surviving models in order to select one of them.

The second experiment made use of incomplete surfaces which were again sub-
jected to arbitrary amounts of scaling and 3-D rotation. In order to obtain in-
complete surfaces, up to 60% of connected vertices were removed from database
objects. As in the previous experiment, for each input object, the system ap-
plied geometric hashing to all database models followed by global veri�cation to
the surviving models. Again, all input objects were correctly recognised by the
system.

In the third experiment, three complex scenes were created each consisting of
two or more objects. Figure 3 shows the three scenes with their extracted features.
These include the kitchen-ware scene, the bull-rider scene, and the space-station

scene. The kitchen-ware scene contains a dish, a kettle, a spatula and a roller.
The bull-rider scene contains a cow and a rider. The space-station scene contains
a space-station and a space-ship attached to it.

As in the earlier experiments, the system applied geometric hashing to all
database models followed by global veri�cation to the surviving models. In the
kitchen-ware scene, dish scored highest with other scene objects also receiving
high scores. In the bull-rider scene, cow, dinosaur and rider received the three
highest scores respectively. In the space-station scene, the station itself received
the highest score.

7 Conclusions

The recognition of free-form 3-D objects using 3-D models under di�erent viewing
conditions based on the geometric hashing algorithm and global veri�cation was
presented. The matching stage of the algorithm used the hash table prepared in the
o� line stage. The feature points on the object were detected by convolving local
parametrisations of the surface with 2-D Gaussian �lters iteratively. Smoothing






was used to reduce number of feature points. The surface Gaussian and mean
curvature values were estimated accurately at multiple scales. In our technique
the local maxima of Gaussian and mean curvatures were selected as feature points.
Furthermore, the torsion maxima of the zero-crossing contours of Gaussian and
mean curvatures were also selected as feature points. This technique was also
shown to be useful for partially occluded objects. In order to verify match, 3D
translation, rotation and scaling parameters were used for global veri�cation and
results indicated that our technique is invariant to those transformations.
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