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Abstract

A novel technique for multi-scale smoothing of a free-form 3-D surface is
presented. Diffusion of the surface is achieved through convolutions of local
parametrisations of the surface with a 2-D Gaussian filter. Our method for
local parametrisation makes use of semigeodesic coordinates as a natural and
efficient way of sampling the local surface shape. The smoothing eliminates
the surface noise together with high curvature regions such as sharp edges,
therefore, sharp corners become rounded as the object is smoothed iteratively.
During smoothing some surfaces can become very thin locally. Application
of decimation followed by refinement removes very small/ thin triangles and
segments those surfaces into parts which are then smoothed separately. Fur-
thermore, surfaces with holes and surfaces that are not simply connected do
not pose any problems. Our method is also more efficient than those tech-
niques since 2-D rather than 3-D convolutions are employed. It is also argued
that the proposed technique is preferable to volumetric smoothing or level set
methods since it is applicable to incomplete surface data which occurs during
occlusion. Our technique was applied to closed as well as open 3-D surfaces
and the results are presented here.

1 Introduction

This paper introduces a new technique for multi-scale shape description of
free-form 3-D surfaces represented by polygonal or triangular meshes. Al-
though there are several methods available to model a surface, triangular
meshes are the simplest and most effective form of polygons to cover a free-
form surface. The common types of polygonal meshes include the triangular
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mesh and the four sided spline patches [5]. Triangular meshes have been
utilised in our work. The multi-scale technique proposed here can be consid-
ered a generalisation of earlier multi-scale representation theories proposed
for 2-D contours [12] and space curves [9].

In our approach, diffusion of the surface is achieved through convolutions
of local parametrisations of the surface with a 2-D Gaussian filter. Semi-
geodesic coordinates [4] are utilised as a natural and efficient way of locally
parametrising surface shape. The most important advantage of our method is
that unlike other diffusion techniques such as volumetric diffusion [7] or level
set methods [16], it has local support and is therefore applicable to partial
data corresponding to surface-segments. This property makes it suitable for
object recognition applications in presence of occlusions. The organisation of
this paper is as follows. Section 2 gives a brief overview of previous work on
3-D object representations including the disadvantage(s) of each method. Sec-
tion 3 covers implementation issues encountered when adapting semigeodesic
coordinates coordinates to 3-D triangular meshes. Section 4 presents diffusion
results and discussion. Section 5 contains the concluding remarks.

2 Literature Survey

This section presents a survey of previous work in representation of 3-D sur-
faces. Comprehensive surveys of 3-D object recognition systems are presented
by Besl and Jain [1], Generalised cones or cylinders [19] approximate a 3-D
object using globally parametrised mathematical models, but they are not ap-
plicable to detailed free-form objects. A form of 3-D surface smoothing has
been carried out in [23] but this method has drawbacks since it is based on
weighted averaging using neighbouring vertices and is therefore dependent on
the underlying triangulation. In volumetric diffusion [7] or level set methods
[16], an object is treated as a filled area or volume. The major shortcoming
of these approaches is lack of local support. In other words, the entire ob-
ject data must be available. This problem makes them unsuitable for object
recognition in presence of occlusion.

3 Semigeodesic Parametrisation

Free-form 3-D surfaces are complex hence, no global coordinate system ex-
ists on these surfaces which could yield a natural parametrisation of that
surface. Studies of local properties of 3-D surfaces are carried out in differen-
tial geometry using local coordinate systems called curvilinear coordinates or
Gaussian coordinates [4]. Each system of curvilinear coordinates is introduced
on a patch of a regular surface referred to as a simple sheet. A simple sheet of
a surface is obtained from a rectangle by stretching, squeezing, and bending
but without tearing or gluing together. Given a parametric representation
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r = r(u,v) on a local patch, the values of the parameters u and v determine
the position of each point on that patch. Construction and implementation
of semigeodesic coordinates in our technique is described in [10].

3.1 Construction of Semigeodesic Coordinates

A geodesic line is defined as a line, which represents the shortest distance
between two given points on a 3-D surface. Semigeodesic coordinates are
constructed at each vertex of the mesh which becomes the local origin. The
following procedure is employed:

1. Construct a geodesic from the origin in an arbitrary direction such as
the direction of one of the incident edges.

2. Construct the other half of that geodesic by extending it through the
origin in the reverse direction.

3. Parametrise that geodesic by the arclength parameter at regular inter-
vals to obtain a sequence of sample points.

4. At each sample point on the first geodesic, construct a perpendicular
geodesic and extend it in both directions.

5. Parametrise each of the geodesics constructed in the previous step by
the arclength parameter at regular intervals.

Due to the displacement of vertices which occurs as a result of smooth-
ing, very small and/or very thin triangles can be generated during smooth-
ing. These odd triangles can cause computational problems and are therefore
removed or merged with neighbouring triangles using known existing algo-
rithms for mesh decimation and refinement [6]. Detection of these triangles
is based on the length of the shortest side or the smallest angle. When the
smallest side or the smallest angle of a triangle is less than a small threshold,
that triangle is removed by merging it with neighbouring triangles. Decima-
tion and refinement are applied after each iteration to simplify the mesh. As
a result, the number of triangles gradually decreases during smoothing. It is
also possible for a surface to become very thin locally as a result of smooth-
ing. When this happens, smoothing can not continue without segmentation
of the surface into parts. Such a segmentation also occurs as a result of mesh
decimation and refinement since the thinned area of the surface always con-
sists of very small and thin triangles. Smoothing can then continue after
segmentation with each part of the object smoothed independently.

3.2 Semigeodesic coordinates on open surfaces

The algorithm described above should be modified to make it also applicable
to open surfaces. The algorithm for smoothing an open surface is defined in
the following way:
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• Grid construction and smoothing at internal vertices is carried out as on
closed surfaces. Any geodesic line that reaches the boundary will stop.
The last sample point at or near the boundary will be duplicated until
the grid is filled. Likewise, if some geodesic lines can not be constructed,
the last geodesic line near the boundary will be duplicated until the grid
is filled.

• If the vertex V of triangle T resides on the boundary, measure the angle
α between the two edges of T that are incident on V . Choose the first
geodesic line as the bisector of α. Only half of the first geodesic line is
constructed because the other half falls outside the surface boundary.

• At the same vertex, construct another geodesic line perpendicular to
the first one.

• One of those geodesic lines might soon intersect the boundary, so com-
pare the lengths of those lines and choose the longer one. This allows
the maximum size grid to be constructed.

• Construct the second family of geodesic lines as perpendicular to the
longer geodesic line determined above.

• As before, any geodesic line that reaches the boundary will stop, and
the last sample point at or near the boundary will be duplicated until
the grid is filled.

3.3 Gaussian Smoothing of a 3-D surface

The procedures outlined above can be followed to construct semigeodesic
coordinates at every point of a 3-D surface S. In case of semigeodesic coor-
dinates, local parametrisation yields at each point P :

r(u, v) = (x(u, v), y(u, v), z(u, v)).

The new location of point P is given by:

R(u, v, σ) = (X (u, v, σ), Y(u, v, σ), Z(u, v, σ))

where
X (u, v, σ) = x(u, v) ⊗ G(u, v, σ)

Y(u, v, σ) = y(u, v) ⊗ G(u, v, σ)

Z(u, v, σ) = z(u, v) ⊗ G(u, v, σ)

and
G(u, v, σ) =

1
2πσ2

e−
(u2+v2)

2σ2

⊗ denotes convolution. This process is repeated at each point of S and the
new point positions after filtering define the smoothed surface. Since the
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coordinates constructed are valid locally, the Gaussian filters have σ = 1. In
order to achieve multi-scale descriptions of a 3-D surface S, the smoothed
surface is then considered as the input to the next stage of smoothing. This
procedure is then iterated many times to obtain multi-scale descriptions of
S.

4 Results and Discussion

The smoothing routines were implemented entirely in C++ and complete
triangulated models of 3-D objects used for our experiments are constructed
at our canter [5]. In order to experiment with our techniques, 3-D objects
with different numbers of triangles were used. Triangular meshes have been
utilised in our work. The first test object was a dinosaur with 2996 trian-
gles and 1500 vertices as shown in Figure 1. The object becomes smoother
gradually and the legs, tail and ears are removed after 10 iterations. The
second test object was a cow with 3348 triangles and 1676 vertices as shown
in Figure 2. The surface noise is eliminated iteratively with the object be-
coming smoother gradually where after 12 iterations the legs, ears and tail
are removed. Figure 3 shows the third test object which was a telephone
handset with 11124 triangles and 5564 vertices. Notice that the surface noise
is eliminated iteratively with the object becoming smoother gradually and
after 15 iterations the object becomes very thin in the middle. Decimation
and refinement then removes the thin handset and segments the object into
two parts. Smoothing then continues for each part as shown in Figure 3.

Our smoothing technique was also applied to a number of open/incomplete
surfaces. Figure 4 shows the results obtained on a part of the telephone
handset. This object also has a triangle removed in order to generate an in-
ternal hole. Figure 5 shows smoothing results obtained on a partial rabbit.
The object is smoothed iteratively and the ears disappear as well. These ex-
amples show that our technique is effective in eliminating surface noise as
well as removing surface detail. The result is gradual simplification of ob-
ject shape. Animation of surface diffusion can be observed at the web site:
http://www.ee.surrey.ac.uk/Research/VSSP/demos/css3d/index.html

5 Conclusions

A novel technique for multi-scale smoothing of a free-form triangulated 3-D
surface was presented. This was achieved by convolving local parametrisa-
tions of the surface with 2-D Gaussian filters iteratively. Our method for
local parametrisation made use of semigeodesic coordinates as natural and
efficient ways of sampling the local surface shape. The smoothing eliminated
the surface noise and small surface detail gradually, and resulted in gradual
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(a) Original (b) 5 iterations (c) 10 iterations

Figure 1: Smoothing of the dinosaur

(a) Original (b) 3 iterations (c) 12 iterations

Figure 2: Smoothing of the cow

(a) Original (b) 15 iterations (c) 25 iterations

Figure 3: Diffusion of the telephone handset
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(a) Original (b) 3 iterations (c) 5 iterations

Figure 4: Diffusion of the partial telephone handset

(a) Original (b) 9 iterations (c) 15 iterations

Figure 5: Smoothing of the rabbit

simplification of object shape. The method was independent of the underlying
triangulation. During smoothing some surfaces can become very thin locally.
Application of decimation followed by refinement removes very small/thin
triangles and segments those surfaces into parts which are then smoothed
separately. Our approach is preferable to volumetric smoothing or level set
methods since it is applicable to incomplete surface data which occurs during
occlusion. Finally, surfaces with holes and surfaces that are not simply con-
nected do not pose any problems. Our approach is preferable to volumetric
smoothing or level set methods since it is applicable to incomplete surface
data which occurs during occlusion.
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