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I. Introduction
s a part of the Aurora programme for 
Mars exploration, funded by the 
United Kingdom Space Agency 

(UKSA) and European Space Agency 
(ESA), the UK contributes to the Exobi-
ology on Mars (ExoMars) rover science 
and engineering programme, with a 
scheduled launch in 2018; Hence, our 
Panoramic Camera (PanCam) [9][15] 
research and development (R&D) is 
timely. PanCam consists of two stereo 
Wide Angle Cameras (WAC) and one 
High Resolution Camera (HRC). While 
the development is still ongoing, we used 
funding awarded by the University Col-
lege London (UCL) Graduate School to 
conduct investigations in the Himalayas 
and at Mount Everest Base Camp (EBC), 
according to the ExoMars rover Refer-
ence Surface Mission (RSM). The inves-
tigations included capturing stereo  
and high resolution images using stereo 
WAC emulators and HRC emulator at 

altitudes 3490 m, 5150 m and above. 
Images from different WAC filters, and 
color images from HRC were acquired 
at various Pan and Tilt Unit (PTU) mast 
positions. Our investigation results show 
significant reduction in data volume with 
minimum loss in image quality. Further-
more, we introduce a novel autonomous 
and computational intelligent system 
called Mission-Specific Data Processor 
(MSDP) for the rover. It includes Pan-
Cam, Visual Data Fusion (VDF), Learn-
ing-enabled Object Detection (LOD), 
Self-Learning Agent (SLA) [22], and 
Environment Model Library (EML)  
as part of the rover’s computational  
intelligence [7].

UCL Mullard Space Science Labora-
tory (MSSL) has been involved in the 
ExoMars mission since 2003. It includes 
scientific research, detailed design and 
development of PanCam as shown in  
Figure 1. Given the Martian atmo-
spheric pressure of less than 14 hecto-
pascal (hPa), high UV flux 50 W/m2 
[21], extreme temperature fluctuations 
between -120 °C and +27 °C in a Sol 

(one Sol is equivalent to 24 hr 39 min 
35.24409 sec), and at 300 parts per mil-
lion (i.e. 300 mg/kg) Water Vapor Frac-
tion (WVF) is more of a trace constitu-
ent; we selected the Himalayan region 
and EBC to conduct our investigations 
in Summer 2010, a year after the 
National Aeronautics and Space Admin-
istration (NASA) ran their experiments 
at Mount Everest [6]. The chosen sites 
for investigation have typical pressure 
483 hPa, UV flux 30 W/m2, daily tem-
perature varies between -50 °C at 
night and +46 °C during daytime, and 
WVF 1100 mg/kg (dry air).

ExoMars rover RSM is a set of daily 
plans [2] [13] which are performed 
within the nominal surface mission 
duration as defined in Table 1. It consists 
of PanCam operational timeline sequences 
in a number of the Sols; these sequences 
handle functions such as WAC and 
HRC autoexposure, autofocus for 
HRC, images acquisition, iteration, time 
delay, thermal control and cameras 
mode switching.

As shown in Figure 2(a) and (b), 
WAC RRGB stereo panorama timeline 
sequence PC_WAC_STC_PAN cap-
tures images by using the Red (R) filter 
at the left Filter Wheel (FW); and Red, 
Green, Blue (RGB) filters of the right 
FW. For example, there are six PTU mast 
positions during Sol 6, whereas in Sol 7 
it has twelve PTU positions, but in Sol 1 
and Sol 8 both operate with ten posi-
tions. When the rover moves away from 
the landing site at Sol 22, the same time-
line sequence will perform a 360° pan-
orama. However, we only have one PTU 
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position in Sol 2 that allows our WAC to 
capture images with geology timeline 
sequence (PC_WAC_GL_PAN). Twelve 
geology filters apply in the order of 
L123456–R123456 where L represents 
left FW, R is right FW and 123456 are 
the corresponding filters. This timeline 
sequence also produces two WAC RR 
images simply by selecting the Red filter 
at each camera. Furthermore, we use one 
of these images to locate the next target 
for high resolution image acquisition. 
Figure 2(c) shows an HRC image as 
captured by the timeline sequence (PC_
HRC_ALL_SEQ) during Sol 3, 4 and 
10. On the other hand, HRC acquires 8 
color images by using eight different 
PTU positions in Sol 1 and 2. Moreover, 
it is necessary to overlap the RGB filter 
subpositions at each PTU position, as 
shown in Figure 3, in order to construct 
an HRC color image.

II. PanCam
PanCam [16][25] is a space instrument 
operating in an environment that is 
hostile to humans and presently other-
wise inaccessible, such as the surface of 
Mars. It has the operating temperature 
range from -45 ºC to +30 ºC; and it 
can also withstand the radiation of 4.2 
krad. PanCam has two WAC and one 
HRC mounted on the optical bench 
(OB) that is located at the top of PTU, 
as shown schematically in Figure 4, 
which is 1.8 m above the ground. Left 
and right WAC are 500 mm (2 h in 
Figure 5) apart and operate as a stereo 
pair. It has 37º horizontal Field of View 
(FOV), focal length (f  ) of 22.5 mm, and 
individual FW for each camera; where 

FW contains 11 filters with wavelength 
m^ h between 440 nm and 1000 nm. 

Star-1000 one megapixel Active Pixel 
Sensors (APS) are selected for both 
WAC and HRC. HRC has a folded 
optical path to illuminate the APS, 5° 
horizontal FOV and focus at 150 mm. 
It uses blue, green and red stripe inter-
ference filter for color acquisition as 
shown in Figure 3. The blue and red fil-
ters occupy 341 pixels wide columns on 
the left and right edges of the APS. Our 
instrument has a single SpaceWire 
interface via the PanCam Interface 
Unit (PIU) which controls the cameras 
and FW. Primarily, PIU performs cam-
era control, data handling, data commu-
nication to the rover and subsequently 
to Earth at the Rover Operations Con-
trol Centre (ROCC). PanCam software 
is written in C and LabVIEW as shown 
in Figure 6. It includes PanCam control 
panel in ROCC and PanCam functions 
as follows:

a) PanCam control panel
b) Timer delay function

Table 1 ExoMars rover PanCam timeline sequences.

Timeline Sequence Sol Type image pTu 

PC_WAC_STC_PAN 1, 8 WiDE-ANGLE STErEo rrGB 40 10

PC_WAC_STC_PAN 6 WiDE-ANGLE STErEo rrGB 24 6

PC_WAC_STC_PAN 7, 22 WiDE-ANGLE STErEo rrGB &  
PANorAMA

48 12

PC_WAC_GL_PAN
2

WiDE-ANGLE L123456-r123456 
GEoLoGY fiLTErS

12 1

PC_HrC_ALL_SEQ 1, 2 HiGH-rESoLuTioN CoLor 8 8

PC_HrC_ALL_SEQ 3, 4, 10 HiGH-rESoLuTioN CoLor 1 1 

(a) (b) (c)

Left WAC Right WAC HRC

Figure 2 Shows Mars images (courtesy NASA) using PanCam simulator. (a) Left WAC.  
(b) right WAC. (c) HrC.

Figure 3 HrC rGB filter.
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c) Timeline sequence
d) Exposure Time (ET)
e) Time stamp function
f ) Filter control function
g) Autofocus, image capture and histogram.

III. PanCam Investigations
Our PanCam investigations were con-
ducted in the Himalayas and at EBC 
according to ExoMars RSM. Note that 
the actual PanCam images are in 16 bit 

greyscale. The color images were taken 
by commercially available cameras to 
illustrate the characteristic of selected fil-
ters during the investigations. The results 
of investigations are listed as follows:

(a)

(b)

Real-Time Image

GPS Com Port Delay Multiplier in ms

1000COM10

COM120

Output Directory Path

C:\Users\pcy\Documents\tmp

C:\Users\pcy\Documents\tmp\2010\09\15\hc1_vis\seq26

C:\Users\pcy\Documents\tmp\hc1_nir\

Input Timeline Sequence Directory PathHC1 Base Directory Path

STOP

Hold 5 s to Stop
Camera Selection LCTF Com Port

Flashing During Capture Images GPS Data Valid?

Captured Image

Histogram

0 255

(c) (d)

(e) (f) (g)

Figure 6 Shows (a) PanCam control panel at roCC. (b)–(g) PanCam functions in LabViEW.
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Investigation (1): Sol 1 highlighted 
results of WAC stereo color images 
using RRGB filters.

Investigation (2): Sol 1 eight HRC 
color images.

Investigation (3): Sol 2 WAC geology 
images using different filters.

Investigation (4): Sol 2 subset of 
HRC color images mosaic. 

Investigation (5): Sol 6 six WAC ste-
reo color images using RRGB filters.

Investigation (6): Sol 22 WAC color 
panorama images.

Investigation (1): Sol 1 Highlighted 
Results of WAC Stereo Color Images 
Using RRGB Filters
Images of EBC were acquired by the 
WAC at altitude 5,150 m with pan 
angle 20°, tilt angle 25°, toe in angle 
2.8°, WVF 11.383 g/kg, ambient tem-
perature 13 °C and pressure 483 hPa. 
The image resolution is 1024 # 1024. 
The first image acquired at 15:00 and 
took a total of 14 minutes to complete. 
Table 2 collects the subset of data. Fig-
ure 7 highlights the WAC stereo images 
with RRGB filters; (a) displays the 
image from left WAC with Red filter; 
(b), (c) and (d) are the images of right 
WAC with RGB filters; (e) is produced 
by combining (c) and (d); (f  ) shows the 
left and right color images from the 
scene for comparison. The final 3D ste-
reo color anaglyph result image at (g) is 
generated from (a) and (e) images.

Investigation (2): Sol 1 Eight HRC 
Color Images
HRC captured the images of Mount 
Everest at 15:44, altitude 5,545 m, auto-
focus, ET 1.4 second, WVF 11 g/kg, 
ambient temperature 13 °C, pressure 483 

hPa; and eight PTU positions as recorded 
in Table 3. Figure 8 illustrates the 1024 # 
1024 resolution images; where images 
(b), (c), (f  ) and (g) are selected to experi-
ment sub-framing, image compression, 
and super-resolution in Section IV.

Investigation (3): Sol 2 WAC Geology 
Images Using Different Filters
This investigation shows the geology 
images of Himalayan rocks at a single 
PTU position. Left and right WAC 
selected different geology filters to  

Table 2 Investigation (1):  
using PC_WAC_STC_PAN.

Wac image iD eT m

leFT righT (sec) (nm)

(a) 45560 1.6 660

(b) 45570 1.6 660

(c) 45571 1.4 540

(d) 45572 1.4 460

(a) (b) (c) (d)

(e) (f) (g)

Figure 7 Shows investigation (1): WAC stereo images of rover tracks. 

Table 3 Investigation (2):  
using PC_HRC_ALL_SEQ.

hrc pan TilT 

image iD [deg] [deg]

(a) 49140 5 25

(b) 49141 10 25

(c) 49142 15 25

(d) 49143 20 25

(e) 49144 5 20

(f) 49145 10 20

(g) 49146 15 20

(h) 49147 20 20

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8 Shows investigation (2): Sol 1 eight HrC color images.

Table 4 Investigation (3):  
using PC_WAC_GL_PAN.

Wac image iD m

leFT righT [nm]

(a) 47500 660

(b) 47630 510

(c) 47510 540

(d) 47650 470

(e) 47540 600

(f) 47670 440

(g) 47560 560

(h) 47690 720
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produce images at 1024 # 1024 resolu-
tion. These images were acquired during 
sunset at altitude 3,490 m, pan angle 10°, 
tilt angle 30°, toe in angle 2.8°, ET 1.6 
second, WVF 16.673 g/kg, ambient tem-
perature 37 °C and pressure 601 hPa. It 
took 5 minutes to complete. Table 4 
includes the investigation data and Figure 
9 displays the result images from the 
experiment. Note that the color images 
were acquired with a Beagle 2 left FW in 
front of an RGB camera; which had no 
IR-cut filter before the sensor.

Investigation (4): Sol 2 Subset of HRC 
Color Images Mosaic
Four 1024 # 1024 HRC images were 
acquired at EBC with altitude 5,150 m, 
tilt angle −20°, autofocus, ET 1.4 second 
WVF 11.383 g/kg, ambient temperature 
13 °C and pressure 483 hPa. The investi-
gation started at 15:28. Table 5 and  

Figure  10 (a), (b), (c) and (d) show the 
recorded data and images. Figure 10 (e) 
illustrates the result of HRC color images 
mosaic as displayed at the ROCC.

Investigation (5): Sol 6 Six  
WAC Stereo Color Images  
Using RRGB Filters
WAC accomplished the PC_WAC_
STC_PAN timeline sequence success-
fully; and captured twenty-four images 
in the Himalayan region at altitude 
3,490 m. During each PTU position, 
we acquired 1024 # 1024 resolution 
RRGB images at the tilt angle 15°, toe 
in angle 2.8°; which had the similar 
imaging results as described in Figure 7. 
Table 6 collects the data during the 
timeline sequence. Note that abbrevia-
tion AT represents ambient tempera-
ture and Pres is pressure in the follow-
ing tables.

Investigation (6): Sol 22 WAC Color 
Panorama Images
Twelve WAC RGB images were cap-
tured in the Himalayas at altitude 
3,490 m with resolution 1024 # 1024, 
tilt angle 30° and toe in angle 2.8°. 
This panorama timeline sequence was 
completed successfully. Table 7 and 
Figure 11 display the result data and 
panoramic view of WAC RGB images.

IV. Sub-Framing, Data Compression 
and Super-Resolution
ExoMars PanCam image compression 
is a robust wavelet algorithm [5]. It has 
the lossless and lossy compressions 
which provide either high definition 
images for close examination or heavily 
compressed thumbnail images for effi-
cient transmission. Primarily, the data 
volume of WAC or HRC image is 
determined by the compression ratio, 
sub-framing (cropping) size and image 
resolution (e.g. down-sampling) from 
the lossless compression ratio 2:1 (8 bit 
per pixel) to the lossy compression 80:1 
(0.2 bit per pixel) thumbnail. There are 
six different sizes of image including 
1024, 512, 256, 128, 64 and 32 pixels in 
row and column, Assuming the row 
value is equal to the column, rover 
normally keeps 10:1 (1.6 bit per pixel) 
compressed image in memory for the 
general geological investigation and sci-
entific purposes. The highly com-
pressed thumbnail (i.e. quick look, pre-
view) often leads to the next download 
for the same image but with a higher 
resolution. In general, image data 
should be compressed before packetiz-
ing and transmitting to the ROCC; 
very occasionally it may be desirable to 
transmit an uncompressed raw image. 
In this case, additional image processing 
functions such as down-sampling,  

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9 Shows investigation (3): Sol 2 WAC geology images. 

Table 5 Investigation (4):  
using PC_HRC_ALL_SEQ.

hrc image iD pan [deg]

(a) 02670 12.5

(b) 02671 15.0

(c) 02672 17.5

(d) 02673 20.0

(a) (b) (c) (d)

(e)

Figure 10 Shows investigation (4): Sol 2 HrC color images mosaic. 
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sub-framing and super-resolution 
should be considered for saving  
data volume.

The need to transmit a lossless (2:1) 
compressed image is extremely rare. 
However, if it is required, the image sub-
framing and super-resolution techniques 
for each individual object (e.g. rocks, 
landmarks) from the scene should be 
considered as an option to reduce the 
image size and data volume. Figure 12 
shows the results of sub-framing and 
super-resolution at the lossless compres-
sion ratios. Figure 13 provides the use 
case diagram of the sub-framed at the 
Region of Interest (ROI), compression 
and super-resolution. The algorithm is 
defined as follows:
1) Telecommand to PanCam to capture 

image at the scene from Mars.
2) Generate thumbnail (80:1 compres-

sion ratio) from image.
3) Downlink the thumbnail to the 

ROCC.
4) ROCC decompresses the thumbnail.
5) Select the ROI (e.g. 256 # 256) 

from the thumbnail.
6) Uplink the ROI coordinates to 

rover via a timeline sequence.
7) Use the defined coordinates to 

command PTU and PanCam to 
take 4 images from the scene 
iteratively.

8) Sub-framing the ROI at the images.
9) Perform the lossless data compres-

sion (2:1) on the sub-framed images.
10)   Downlink the compressed sub-

framed images to the ROCC.
11)  ROCC decompresses the images.
12)   ROCC applies the super-resolution 

algorithm to the images to re-con-
struct a high resolution image.

V. Design Methodology of 
Autonomous and Computational 
Intelligent System for the Rover
PanCam operates from Earth by radio 
link, where because of the delays in com-
munication due to the great distance 
involved, real-time operation is impossible. 
Figure 13 shows the selection of ROI 
demanding actions from the ROCC. To 
perform such operation we need human 
intervention and decision making which 
could take at least one Sol to complete 

the task. Although an optional automatic 
PanCam image capture software is avail-
able for targeting rigid objects like rocks, 
the rover is not equipped to detect free-
form objects; such as dust devils and other 
astronomical events on Mars. Hence, an 
alternative approach becomes necessary, 
especially when it is operating under 
extreme hostile environment. We intro-
duce a novel design methodology of 
autonomous and computational intelli-
gent system for the rover, which is called 
Mission-Specific Data Processor (MSDP), 
a system based on the flexible architec-
tural approach for multi-disciplinary 
applications in the aerospace industry. 
MSDP simplifies the overall operations in 
the rover. It caters for multi-channel input 
and processes data in real-time on-board 
the rover according to user-defined sce-
narios. For example, the rover’s house-

keeping channel records the mission-spe-
cific information for analysis and reports 
failures as a part of self-learning computa-
tional intelligent system (i.e. autonomous 
mission-specific rover output). MSDP 
divides the output data into different lev-
els. It enables multi-tasking process for 
data fusion and multi-node system archi-
tecture for the image database. Other 
database handles a set of multi-disciplinary 
telecommands and telemetry based on a 
scenario to provide data information such 
as rover coordinates, navigation parame-
ters and path planning. Another database 
that supplies the data processing algo-
rithms including image processing, seg-
mentation and representation [28], feature 
extraction and matching [29], object 
detection and recognition [19], self-learn-
ing and training. At each level of output, a 
data logger tracks the data passing through 

Table 6 Investigation (5): using PC_WAC_STC_PAN.

Wac image iD Time pan eT m WVF aT preS

leFT righT (hr:min) (deg) (sec) (nm) (g/kg) (°c) (hpa)

45860 12:14 20 1.6 660 12.711 23 603

45890 1.6 660

45891 1.4 540

45892 1.4 460

45940 12:28 40 1.6 660 13.370 25 602

45960 1.6 660

45961 1.4 540

45962 1.4 460

46010 12:42 60 1.6 660 13.956 27 601

46030 1.6 660

46031 1.4 540

46032 1.4 460

46090 12:56 80 1.6 660 14.011 29 600

46110 1.6 660

46111 1.4 540

46112 1.4 460

46160 13:10 100 1.6 660 13.940 30 600

46181 1.6 660

46182 1.4 540

46183 1.4 460

46230 13:24 120 1.6 660 14.780 31 600

46250 1.6 660

46250 1.4 540

46250 1.4 460
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the current level. A synchronisation  
process safeguards the integrity of the data 
sets. Figure 14 shows the autonomous 
MSDP architectural design.

A. Visual Data Fusion (VDF)
VDF is a software engine which ingests 
multiple visual inputs to produce more 
accurate and complete 3D data products, 
such as nested multi-resolution digital ter-
rain maps [20], texture maps, and a con-
stantly updated location map [14]. In a 
Geographic Information System (GIS) 
context, data fusion is often simply  
considered as a data interpolation from 
different sensors to enhance the spatial 
resolution (or the coverage) of the recon-
structed site of interest. However, in many 
cases, it includes a process to produce a 
more accurate data product by fusing 
multiple estimation results with different 
levels of statistical confidence. Assuming a 
global positioning system-free (and possi-
bly inertial measurement unit-free) envi-
ronment where visual information is the 
vital clue to compensate for the error 
involved in the mechanical odometers for 
localization, data fusion is an important 
process for any autonomous rover which 
contains more than one range sensor. 
Nevertheless, most rover applications to 
date have overlooked the significance of 
such data fusion because each sensor has 
been developed for a specific purpose. 
Although in robotics it is commonplace 
to fuse information from the same sensors 
by a Simultaneous Localization and Map-
ping (SLAM) technique [1], this is 
restricted to the results from the same 
sensor in most cases. Data fusion with 
overview(s) from different platforms has 
not been properly investigated to date by 
anyone. Furthermore, if there is a dedi-
cated Geographical Image Database 
Server (GIDS) that stores the sensed data 
and its derived data products, it is possible 
to design a more aggressive data  fusion 
process, which can refine a current recon-
struction/location by the previous sensing 
results at different positions. Thus, one of 
the core technologies, developed by the 
data fusion process is a robust image 
matcher via a new matching feature from 
2D–3D data fusion. In addition, consider-
ing a situation to fuse reconstruction 

Table 7 Investigation (6): using PC_WAC_STC_PAN.

Wac image iD Time pan eT m WVF aT preS

leFT righT (hr:min) (deg) (sec) (nm) (g/kg) (°c) (hpa)

46370 14:00 0 1.6 660 15.378 35 606

46390 1.6 660

46391 1.4 540

46392 1.4 460

46480 14:14 5 1.6 660 18.575 37 606

46500 1.6 660

46501 1.4 540

46502 1.4 460

46590 14:28 10 1.6 660 19.711 38 604

46620 1.6 660

46621 1.4 540

46622 1.4 460

46670 14:42 15 1.6 660 19.591 40 604

46690 1.6 660

46691 1.4 540

46692 1.4 460

46740 14:56 20 1.6 660 20.051 42 604

46770 1.6 660

46771 1.4 540

46772 1.4 460

46820 15:10 25 1.6 660 20.330 44 604

46840 1.6 660

46841 1.4 540

46842 1.4 460

46890 15:24 30 1.6 660 20.389 45 604

46920 1.6 660

46921 1.4 540

46922 1.4 460

47040 15:38 35 1.6 660 20.388 46 604

47060 1.6 660

47061 1.4 540

47062 1.4 460

47150 15:52 40 1.6 660 19.371 45 603

47180 1.6 660

47181 1.4 540

47182 1.4 460

47230 16:06 45 1.6 660 20.423 46 603

47250 1.6 660

47251 1.4 540

47252 1.4 460

47300 16:20 50 1.6 660 20.423 46 603

47320 1.6 660

47321 1.4 540

47322 1.4 460

47370 16:34 55 1.6 660 19.315 46 603

47390 1.6 660

47391 1.4 540

47392 1.4 460
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results from rear and front views, 3D 
model-based data matching plays an 
important role in the fusion. Fast 3D 
model-based searching within a large 
GIDS database is another significant chal-
lenge, in which we have considerable 
experience and knowledge.

B. Learning-Enabled Object  
Detection (LOD)
LOD provides the ability to perceive sur-
rounding objects by extracting meaning-
ful information from sensor data, and is 
the key to autonomous systems. This is 
especially true for localizing and navigat-
ing unmanned vehicles; such as a rover in 
a dynamic environment. Rock-like 
objects can be classified as hazards that 
could potentially obstruct the rover’s path; 
landmarks that can be used as reference 
points for localization and building maps, 
or ROI, or scientifically important rocks 
on Mars. Objects can be retrieved by pro-
cessing various types of sensor data but we 
focus here on images from PanCam. Cur-
rent vision-based methods of detecting 
and classifying objects are based on the 
object’s geometric features and appear-
ance. The dominant approaches for real-
time processing of objects use holistic 
generative and discriminative models [24]. 
Generative holistic models are suitable for 
recognizing objects with relatively uni-
form geometric properties (e.g. pipes, 
faces) whereas discriminative models 
work best with previous knowledge of 
the appearance of the object that is stored 
in a template during training. Naturally, 
discriminative models run faster but are 
restricted by the available templates. Our 
object detection is achieved by processing 
and fusing data from multiple sensors 
including images captured by PanCam.

C. Self-Learning Agent (SLA)
SLA is capable of inferring objects from 
partial knowledge of the detected features 
by utilizing a multitude of data processing 
techniques. The SLA employs a hierarchi-
cal approach where class descriptions are 
learnt based on the complexity of the clas-
sification method as described in Figure 15.  
A template of object classes is stored and 
updated in the Environment Model 
Library (EML) upon successful detection 

Figure 11 Shows investigation (6): Sol 22 WAC panorama.

4 Sub-Framed 256 # 256 ROI
from the Original Images in
Figure 8(b), (c), (f) and (g).

Super-Resolution (1536 # 1536) Image of
Sub-Framed ROI of Mount Everest North
Face with 2:1 Lossless Compression.

Histogram of Super-Resolution
Image with 2:1 Compression.

0 255

Figure 12 Shows sub-framed roi, compression and super-resolution.
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Figure 13 The use case diagram.
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of the object in question, so as to increase 
the identification speed of similar objects 
and to reduce the load on computational 
resources. The main challenges here are to 
achieve learning in real time and to 
improve object detection speed and 
robustness. The existing data mining and 
learning techniques applied in other appli-
cations such as search engines are relevant 
but not readily or directly applicable.

Hence, for the benefits of the design of 
SLAM and LOD, a self-organizing map 
with neural networks adequately classifies 
the sensor outputs during the learning pro-
cess [12]. Using geometric hashing for the 
abstract features in 3D space [18], the neu-
rons in the lattice generate the self-organiz-
ing feature map. According to the topolog-

ical order, the learning algorithm of the 
self-organized map is outlined as follows:
1) Randomly select a weighted value 

from the neurons.
2) Pick three sample points from the 

3D space.
3) Matching through all neurons 

according to the given weighted 
value to find the winning neurons.

4) Update the weighted value from 
the winning neurons.

5) Iterate the process from step (2) 
until it becomes a steady state.

Most importantly the learning rate of 
SLA depends on the size of kernel that 
we convolve to find the features of cur-
vature class and torsion class within the 
neighborhood of local surface. Similarly, 

this applies to the other classes such as 
roughness, obstacles, texture, color, tem-
perature, pressure, water vapor and radia-
tion as defined in Table 6 and Table 7.

D. Environment Model Library (EML)
EML consists of detected objects and envi-
ronment properties that are mapped with 
the location information from the GIDS. 
The library is the result of multiple pipe-
line processes [8][23] shown in Figure 15 
and provides a solution for autonomous 
navigation [4][11] and environment per-
ception. Objects can be abstracted in vari-
ous classes based on; for example, geome-
try, appearance and material attributes. As 
the autonomous rover interacts with the 
environment, the library offers a database 
of human-like interpretation of the envi-
ronment. This in turn allows the rover to 
make human-like decisions [26], such as 
producing a path cost-map that is opti-
mized based on the EML and can be used 
for path planning of the rover as given in 
Figure 16. SLA is responsible for compar-
ing the partial information obtained dur-
ing the detection stage with data within 
the EML to achieve classification. If 
required, data from the EML can also be 
displayed from a 3D virtual reality simula-
tor at the ROCC such as the one pre-
sented in [27]. This concept can increase 
learning accuracy by incorporating human 
feedback in a timely manner.

VI. Conclusions and Future Research
Our investigations in the Himalayas and at 
Mount Everest provided useful informa-
tion for PanCam and for future R&D. 
Capturing images according to the Exo-
Mars rover baseline information in the 
RSM gave us the opportunities to 
explore how the planning works when 
the rover interacts under hostile environ-
ment. Mount Everest provides a good 
analogue for an excursion on the surface 
of Mars [10]. For example, using the cap-
tured WAC stereo images we have suc-
cessfully re-constructed the 3D stereo 
images of Mars-like-landscapes at EBC. 
Furthermore, we demonstrated that the 
data volume can be significantly reduced 
with minimum loss in its image quality 
after sub-framing, data compression and 
super-resolution. Finally, the novel MSDP 
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approach allows us to improve the current 
ExoMars rover PanCam functionality; and 
to expand its future applications for 
autonomy and computational intelligence 
[3][17] in space science [30].
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