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Abstract: A novel technique is presented for multi-scale curvature computation on a smoothed 
3-D surface. This is achieved by convolving local parameterisations of the surface iteratively with 
2-D Gaussian filters. In the technique, each vertex of the mesh becomes a local origin around 
which semi-geodesic co-ordinates are constructed. A geodesic from the origin is first constructed 
in an arbitrary direction, typically the direction of one of the incident edges. The smoothing 
eliminates surface noise and slowly erodes small surface detail, resulting in gradual simplification 
of the object shape. The surface Gaussian and mean curvature values are estimated accurately at 
multiple scales, together with curvature zero-crossing contours. For better visualisation, the 
curvature values are then mapped to colours and displayed directly on the surface. Furthermore 
local maxima of Gaussian and mean curvatures, as well as the torsion maxima of the zero-crossing 
contours of Gaussian and mean curvatures are also located and displayed on the surface. These 
features can be utilised by later processes for robust surface matching and object recognition. The 
technique is independent of the underlying triangulation and is more efficient than volumetric 
diffusion techniques since 2-D rather than 3-D convolutions are employed. Another advantage is 
that it is applicable to incomplete surfaces which arise during occlusion or to surfaces with holes. 

1 Introduction 

Curvature estimation is an important task in 3-D object 
description and recognition. Surface curvature provides a 
unique viewpoint invariant description of local surface 
shape. Differential geometry [ I ]  provides several measures 
of curvature, which include Gaussian and mean curvatures. 
Combination of these curvature values enables the local 
surface type to be categorised. 

In this paper, we introduce a new technique for multi- 
scale curvature computation on a smoothed 3-D' surface. 
Complete triangulated models of 3-D objects are 
constructed and, using a local parameterisation technique, 
they are then smoothed using a 2-D Gaussian filter. The 
technique considered here is a generalisation of earlier 
multi-scale representation theories proposed for 2-D 
contours [2] and space curves [3]. However, note that the 
differential geometry of 3-D surfaces is significantly more 
complex than that of contours, and therefore this general- 
isation involves many non-trivial issues that do not arise in 
the earlier techniques. More details of the diffusion tech- 
nique as well as a literature survey appear in [4]. 

In our approach, diffusion of the surface is achieved 
through convolutions of local parameterisations of the 
surface with a 2-D Gaussian filter [4, 51. Semi-geodesic 
co-ordinates [ l ]  are utilised as a natural and efficient way 
of locally parametrising surface shape. The most important 
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advantage of our method is that, unlike other diffusion 
techniques such as volumetric diffusion [6, 71 or level set 
methods [8], it has local support and is therefore applicable 
to partial data corresponding to surface segments. This 
property makes it suitable for object recognition applica- 
tions in the presence of occlusions. It is also more efficient 
than those techniques since 2-D rather than 3-D convolu- 
tions are employed. 

Using this approach, we show examples of 3-D objects 
with their estimated Gaussian and mean curvature values 
[ 11. For visualisation, the curvature values on the surface 
can be mapped to colours [9]. Once surface curvatures are 
estimated, curvature zero-crossing contours are recovered 
and displayed on the surface. Local maxima of Gaussian 
and mean curvatures, as well as the maxima of torsion of 
zero-krossing contours of Gaussian and mean curvatures, 
are also located and displayed on the surface. 

2 Literature survey 

Many object recognition systems rely on restrictions 
imposed on the geometry of the object. However, complex 
free-form surfaces may not be modelled easily using 
volumetric primitives. A free-form surface is a surface 
such that the surface normal is defined and continuous 
everywhere, except at sharp corners and edges [IO]. 
Discontinuities in the surface normal or curvature may be 
present anywhere on a free-form object. The curves that 
connect these points of discontinuity may meet or diverge 
smoothly. Recognition of free-form objects is essential in 
inspection of arbitrary curved surfaces and in path plan- 
ning for robot navigation. 

In this Section, we present a survey of previous work on 
representation of 3-D surfaces. Sinha and Jain [l 11 provide 
an overview of geometry-based representations derived 
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from range data of objects. Comprehensive surveys of 3- 
D object recognition systems are presented by Besl and 
Jain [12], Chin and Dyer [I31 and Suetens et al. [14]. 
Several representation schemes for 3-D objects have 
adopted some form of surface or volumetric parametric 
models to characterise the shape of the objects. Current 
volumetric representations rely on representing objects in 
terms of generalised cylinders, superquadrics, set-theoric 
combinations of volume primitives as in constructive 
solid geometry (CSGj or spatial occupancy [ 15-1 91. 
However, it may not be possible to express all objects 
with free-form surfaces using a single scheme such as 
superquadric primitives. Although there are several meth- 
ods available to model a surface, triangular meshes are 
the simplest and most used form of polygon to cover a 
free-form surface. Common types of polygonal mesh 
include the triangular mesh 120-221 and the four-sided 
spline patches. Triangular meshes have been utilised in 
our work. 

Polyhedral approximations [23] model an object using 
vertices and flat faces. Their disadvantage is that the 
process which determines the vertices is not robust to 
noise and local deformations of shape. Smooth 3-D splines 
[24] can also be fitted to 3-D objects. Their shortcomings 
are that the process of knot point selection is again not 
robust and that the spline parameters are not invariant. 
Generalised cones or cylinders [25] and geons [26] approx- 
imate a 3-D object using globally parametrised mathema- 
tical models, but they are not applicable to detailed free- 
form objects. Multi-view representations [27] are based on 
a large number of views of a 3-D object obtained from 
different viewpoints, but difficulties can arise when a new 
view is encountered. In volumetric diffusion [7] or level set 
methods [8], an object is treated as a filled area or volume. 
The object is then blurred by processes described by the 
classic diffusion equation. The boundary of each blurred 
object can then be defined by applying the Laplacian 
operator to the smoothed area or volume. The major 
shortcoming of these approaches is lack of local support. 
In other words, the entire object must be available. This 
problem makes them unsuitable for object recognition in 
the presence of occlusion. A form of 3-D surface smooth- 
ing has been suggested previously [28, 291, but this method 
has drawbacks since it is based on weighted averaging 
using neighbouring vertices and is therefore dependent on 
the underlying triangulation. The smoothing of 3-D 
surfaces is a result of the diffusion process [30]. For 
parameterisation of a 3-D surface, other methods have 
been studied, such as the use of asymptotic co-ordinates 
[31], isothermic co-ordinates [ l ,  321 and global co- 
ordinates [33], as used for closed simply connected 
objects. 

Another approach for specifying a 3-D object is a view- 
centred representation. The aspect graph approach [34] 
attempts to take the infinite set of 2-D views of a 3-D 
object and partition it into a small set of representative or 
typical views. Murase and Nayar [35] use this approach, 
together with photometric information, to describe and 
recognise objects. A major drawback of view-centred 
representations is the lack of complete information. 

Recent approaches using point set based registration 
[36], splash and super polygonal segments [37] and alge- 
braic polynomials [38, 391 have addressed the issue of 
representing complex curved free-form surfaces. However, 
there are limitations relating to object segmentation issues, 
surface fitting convergence, restricting objects to be topo- 
logically equivalent to a sphere, and sensitivity to noise 
when low-level surface features are used. 
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3 Semi-geodesic parametrisation 

Free-form 3-D surfaces are complex; hence no global co- 
ordinate system exists on these surfaces which could yield 
a natural parametrisation of the surface. Studies of local 
properties of 3-D surfaces are carried out in differential 
geometry using local co-ordinate systems called curvi- 
linear co-ordinates or Gaussian co-ordinates [I]. Each 
system of curvilinear co-ordinates is introduced on a 
patch of a regular surface referred to as a simple sheet. 
A simple sheet of a surface is obtained from a rectangle by 
stretching, squeezing, and bending, but without tearing or 
gluing together. Given a parametric representation r = 
Y ( U ,  v j  on a local patch, the values of the parameters U 

and v determine the position of each point on that patch. 
Construction and implementation of semi-geodesic co- 
ordinates in our technique is described in [4]. 

3. I Geodesic lines and semi-geodesic 
co-ordinates 
A geodesic line is defined as a contour which locally 
represents the shortest distance on a 3-D surface between 
any two points on that contour. A semi-geodesic co- 
ordinate system consists of two families of co-ordinate 
lines which are mutually perpendicular. In our method, an 
initial geodesic line is drawn arbitrarily through the origin 
of the local area. This geodesic line is sampled at equal- 
sized intervals, based on the average length of triangle 
edges. The second family of lines are also geodesic lines 
and normals to the first line at the sampled points. All the 
lines together form semigeodesic co-ordinates. 

3.2 Geodesic line construction 
Before semigeodesic co-ordinates can be defined on a local 
patch at a chosen vertex an arbitrary geodesic line must 
be constructed. The edge connecting V and one of its 
neighbouring vertices is selected as an arbitrary direction. 
Since the surface is locally represented as a flat polyhedral 
facet, a straight line is a geodesic, and this can be followed 
until an edge or vertex is reached. This new edge point or 
vertex becomes a starting point for the next extension. To 
continue a geodesic line into the next triangle, we first 
measure the angle between the line and the edge common 
to both triangles which is intersected by the geodesic line. 
We then extend the line into the next triangle at the same 
angle. The construction of this geodesic line continues 
until the last edge or vertex of the local area is reached. 
The same process is used to construct the negative portion 
of the geodesic line. 

3.3 Perpendicular geodesic line construction 
The second family of lines are constructed perpendicularly 
to the above geodesic line. At each sampled point of the 
geodesic line, a perpendicular geodesic line is constructed. 
Using a similar technique to that described in Section 3.2. 
the perpendicular lines are constructed in the forward 
direction, as well as the backward direction, with respect 
to the geodesic line. This completes the construction of a 
local semigeodesic parametrisation. 

Semigeodesic co-ordinates can also be constructed at or 
near a boundary in the case of an incomplete surface or a 
surface with holes. In such cases, geodesic lines are 
constructed as before, but they are terminated as soon as 
they intersect the surface boundary. Fig. 1 shows the 
complete semigeodesic co-ordinates on a triangular mesh. 
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Fig. 1 Semi-geodesic co-ordinates on triurrgulur mesh 

3.4 2-0 Gaussian convolution 
Gaussian filtering is a weighted average smoothing carried 
out at a vertex and its neighbourhood. A 2-D Gaussian 
filter is generated according to the formula below [40]: 

1 (.*+?I 
G(u, v, o) = - e - T  (1) 2no2 

The spatial extent of the Gaussian filter is determined by 
the variance 0, and this can be set to include only vertices 
in a small area local to the vertex. For a large 3-D surface, 
smoothing is achieved by using many fixed size local 
filters. To avoid over- or under-sampling, the size of the 
area must be carefully chosen. In other words, a local area 
must be a reasonably large size to provide accurate results 
but cannot be too large: otherwise it yields invalid results, 
as semigeodesic co-ordinates are only defined locally. 
Experiments conducted with a filter size of 9 with 
(T = 1 .O yielded the most reasonable results. 

To smooth a 3-D surface, a fixed size 2-D Gaussian filter 
with (T = 1.0 is convolved with the local area. Local 
parametrisation of the surface yields 

y(u, VI = M u ,  .>,v(u, v) ,z(u,  4) (2)  

(3) 

The smooth surface is defined by 
R(u, v, = (‘-vu, v, 01, Y(u, v, o),Z(u,  v, 

where 
X ( U ,  V ,  o) = X ( U ,  V )  * G(u, V ,  0) 

N u ,  v, 0) = Y(U,  v) * G(u, v, a> 
Z ( U ,  V ,  0) = z(u, v) * G(u, V ,  0) 

and * denotes convolution. This process is repeated at each 
vertex, and the new vertex positions after filtering define 
the smoothed surface. This procedure is iterated several 
times to achieve multi-scale smoothing of the surface. 

4 Curvature estimation 

In this Section, we present techniques for accurate estima- 
tion of Gaussian and mean curvatures at multiple scales on 
smoothed free-form 3-D surfaces. Differential geometry 
provides several measures of curvature, which include 
Gaussian and mean curvatures [I]. Consider a local para- 
metric representation of a 3-D surface 

Y = Y(U, v) 

r(u, v) = (.(U, V I ,  Y(U, v), z(u, 4) 
with co-ordinates U and v, where 
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Gaussian curvature K exists at regular points of a surface of 
class C2. To define Gaussian curvature, we first consider 
the concept of the spherical image. The spherical image of 
a point P on a surface is a point on the unit sphere with the 
same normal vector. Now consider a domain Q on the 
surface, which contains the point €? Let Q* be the spherical 
image of Q. Take the ratio of the area of Q* to the area of 
Q. The limit as the domain R contracts to P of this ratio is 
called the Gaussian curvature of the surface at l? When 
r(u, v) corresponds to semigeodesic co-ordinates, K is 
given by 

where subscripts denote partial derivatives, and 

where 

A = YUZ, - ZllYV B = x,z, - %Ju c = X U Y ,  -YIP, 
Mean curvature H also exists at regular points of a surface 
of class C2. Mean curvature at a point P of a surface is 
defined as the arithmetic mean of the principal curvatures 
at point l? The principal curvatures at a point P of a surface 
are the largest and smallest values of normal curvatures for 
all directions at point P. Finally, the normal curvature at P 
of a curve on a surface is the projection of the curvature 
vector of the curve at P on the normal vector of the surface 
at P. When r(u, v )  corresponds to semi-geodesic co- 
ordinates, N is given by 

The mathematical properties of the two surface curvature 
functions are now discussed in more detail. Both Gaussian 
and mean curvature values are direction-free quantities. 
Gaussian and mean curvatures are invariant to arbitrary 
transformation of the (U,  v )  parameters, as well as rotations 
and translations of a surface. Combination of these curva- 
ture measures enables the local surface type to be cate- 
gorised. On smoothed surfaces of 3-D objects, the 
procedure for estimating the Gaussian and mean curvatures 
is as follows. For each point of the surface, 

P ( X ( U ,  v), Y(% VI ,  z(u, 4) 
the corresponding local neighbourhood data are convolved 
with the partial derivatives of the Gaussian function G(u, v, 
o), i.e. 

aG aG aG 

aG 
x , = x * - - ,  y , = y * - ,  z , = z * -  

aV av aV 

a2G a2G a2G 

a2 G a2 G 

a2G a2G a2G 
x,,, =x* - ,  Y21” =Y*=’ z,,, = z * -  auav auav 
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where * denotes convolution. Finally, curvature values on a 
3-D surface are estimated by substituting these values into 
equations 4 and 5 ,  respectively. 

4.7 Curvature zero-crossing contours 
After computing curvature values at each vertex of a 
smoothed 3-D surface, we can locate curvature zero-cross- 
ing contours, where curvature functions K or H (defined by 
eqns. 4 and 5) are equal to zero. Curvature zero-crossing 
contours can be useful for segmenting a smoothed 3-D 
surface into regions. The process of recovery of the 
curvature zero-crossing contours is identical for Gaussian 
and mean curvatures. Every edge e of the smoothed surface 
is examined in turn. If the vertices at each end of e have the 
same signs of curvature, then there is no curvature zero- 
crossing point on e. However, if the vertices of e have 
different signs of curvature, then there exists a point on e at 
which curvature goes to zero. The zero-crossing point is 
assumed to be at the midpoint of e. The other two edges of 
the triangle to which e belongs are then checked, since 
there must be another zero-crossing point on one of those 
edges. When that zero-crossing is found, it is connected to 
the previously found zero-crossing. The curvature zero- 
crossing contour is tracked in this fashion until we return to 
the starting point. 

4.2 Local curvature maxima 
Local maxima of Gaussian and mean curvatures are 
significant and robust feature points on smoothed surfaces, 
since noise has been eliminated from those surfaces. The 
process of recovery of the local maxima is identical for 
Gaussian and mean curvatures. Every vertex V of the 
smoothed surface is examined in turn. The neighbours of 
Vare defined as vertices that are connected to V by an edge. 
If the curvature value of V is greater than the curvature 
values of all its neighbours, V is marked as a local 
maximum of curvature. Curvature maxima can be utilised 
by later processes for robust surface matching and object 
recognition with occlusion. 

4.3 Maxima of torsion of curvature zero-crossing 
con tours 
In this Section, we review the computation of torsion. 
Torsion is the instantaneous rate of change of the osculat- 
ing plane with respect to the arc length parameter. The 
osculating plane at a point P is defined to be the plane with 
the highest order of contact with the curve at P. Formally, 
let P be a regular point of a curve of class C, , and let Q be 
a variable point on the curve in a small neighbourhood of I? 
Let P correspond to the value s of the arc length parameter 
and Q to the value s+h.  Denote by $ the angle from the 
osculating plane at P to the osculating plane at Q. The limit 
of the ratio $/h as h -+ 0 is called the torsion of the curve 
at P. Intuitively, torsion is a local measure of the nonpla- 
narity of a space curve [l]. The set of points of a space 
curve are the values of a continuous, vector-valued, locally 
one-to-one function 

where x(u), y(u)  and .(U) are the components of v(u), and U 

is a function of arc length of the curve. To compute torsion 
z at each point of the curve, it is expressed in terms of the 
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derivatives of x(u), y(u) and z(u). In case of an arbitrary 
parametrisation, torsion is given by 

where i ( u ) ,  j ( u )  and ? ( U )  are the convolutions of x(u), y(u) 
and z(u) with the first derivative of a 1-D Gaussian function 
GI(% a) 

where * denotes convolution. Note that x and x’ represent 
convolutions with the second and third derivatives of G, . 

5 Results and discussion 

In this Section, we present results on free-form surface 
smoothing, as well as curvature estimation. 

5. I Diffusion 
The smoothing routines were implemented entirely in 
C++. Complete triangulated models of 3-D objects used 
in our experiments were constructed through fusion of 
multiple range images [21, 221. To experiment with our 
techniques, both simple and complex 3-D objects with 
different numbers of triangles were used. Each iteration of 
smoothing of a surface with 1000 vertices took about 0.5 
second of CPU time on an UltraSparc 170E. 

The first test object was a toy dinosaur model, with 2996 
triangles and 1500 vertices, as shown in Fig. 2. Note that 
the surface noise was eliminated iteratively, with the object - 
becoming smoother gradually. The legs, tail and ears were 
removed after 10 iterations. The next test object was a cow, 
with 3348 triangles and 1676 vertices, as shown in Fig. 3. 
The surface noise was eliminated iteratively, with the 
object becoming smoother gradually. After 12 iterations 
the legs, ears and tail were removed (as was seen for the 
dinosaur). 

These examples show that our technique is effective in 
eliminating surface noise as well as removing surface 
detail. The result is gradual simplification of object 
shape. Note that our technique is robust to mesh geometry 
and structure. This is achieved by uniform sampling of the 
mesh surface when semi-geodesic co-ordinates are 
constructed. In fact, we applied decimation to the mesh 
after each iteration of smoothing to remove odd-shaped 
triangles. However, this procedure did not have any 
adverse effects on the results. 

Owing to the local nature of semi-geodesic co-ordinates, 
our technique i: also applicable to incomplete surfaces 
which arise during occlusion or surfaces with holes. 
Because of space constraints the corresponding results 
could not be included here. The interested reader is 
referred to [ 5 ] .  

Our technique has been tested on several datasets 
representing complex shapes, and the results indicate the 
robustness of the technique under various conditions of 
noise and shape deformations. For further examples of 
smoothing, see [4, 411. 

5.2 Curvature estimation 
In this Section, we present the results of application of our 
curvature estimation techniques to 3-D objects using 
methods described in Section 4. The first example is the 
dinosaur. After smoothing the object, the Gaussian curva- 
tures of all vertices were estimated. To visualise these 
curvature values on the surface, they were mapped to 
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a b 

Fig. 2 Smoothing of the dinosaur 
a Original 
b 3 iterations 
c 5 iterations 
d 10 iterations 

C 

colours using the Visualisation Toolkit (VTK) [9]. The 
results are shown in Figs. 4a and b. Surface curvature 
colours are coded as follows: red = high, blue = low, and 
green = non-extreme values. A11 convex corners of the 
dinosaur are red, indicating high curvature values; the 
concave corners are blue, indicating low curvature 
values; and other areas are green, since their curvature 
values are close to zero. The same experiment was repeated 
to estimate the mean curvatures of the dinosaur, and the 
results are shown in Figs. 4c and d. The next object was a 

a 

d 

cow, and the Gaussian and mean curvatures were also 
estimated, and Fig. 5 shows the results. 

The curvature zero-crossing contours of these surfaces 
were found and displayed on the surface. Curvature zero- 
crossing contours can be used for segmenting surfaces into 
regions. Figs. 6a and b show Gaussian curvature zero- 
crossing contours for the smoothed dinosaur. Figs. 6c and 
d show mean curvature zero-crossing contours for the same 
object, The same experiments were repeated for the cow, 
and these results are shown in Fig. 7. Note that the number 

b 

C 
Fig. 3 Smoothing of the cow 
a Original 
b 3 iterations 
c 8 iterations 
d 12 iterations 
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a 

C 

Fig. 4 
n One iteration 
b 6 iterations 
c One iteration 
d 6 iterations 

Gaussian (top row’) and mean (bottom row) curvatures on the dinosaur 

b 

d 

a b 

C 

Fig. 5 
a One iteration 
b 6 iterations 
c One iteration 
d 6 iterations 
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Gaussian (top row) und mean (bottom row) curvatures on the cow 
d 
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a b 

C d 

Fig. 6 Gaussian (top row) and nzean (bottom row) curvature zero-crossing contours on the dinosaur 
a One iteration 
b 6 iterations 
c One iteration 
d 6 iterations 

of curvature zero-crossing contours is reduced as the object 
is smoothed iteratively. 

From the curvature values, the local curvature maxima 
for the smoothed objects can be computed. The local 
maxima of Gaussian curvature on the dinosaur are shown 
in Fig. 8a. Fig. 8b shows the local maxima of mean 
curvature. The local maxima of Gaussian and mean curva- 

tures for the cow are shown in Fig. 9. All curvature maxima 
are shown after one iteration. 

Finally, the torsion maxima of curvature zero-crossing 
contours, which are alternative features used for matching, 
were determined and displayed on the object. Figs. 10a and 
b show the torsion maxima of curvature zero-crossing 
contours of the dinosaur for Gaussian and mean curvatures, 

B 
a b 

C 

Fig. 7 Gaussian (top row) and mean (bottom row) cwvature zero-cvossing contours on the COW, 

a One iteration 
b 6 iterations 
c One iteration 
d 6 iterations 

d 

460 IEE Proc.-Vi~. Inmge Signal Pvocess., !%I. 147, No. 5, October 2000 



a 

a 

b 

Fig. 8 
a Gaussian 
b Mean 

Curvature maxima of the dinosaur 

a 

b 

Fig. 9 
a Gaussian 
h Mean 

Curvature maxima of the cow 

respectively. Fig. 11 shows the results for the cow. The 
torsion maxima are also shown after one iteration. 

These features can be utilised by later processes for 
robust surface matching and object recognition with occlu- 
sion. Animation of surface diffusion can be observed at our 
web site: http://www.ee.surrey.ac.uWResearch/VSSP/ 
demos/css3d/index. h tml 

6 Conclusions 

A novel technique for multi-scale curvature computation 
on a smoothed 3-D surface has been presented. In our 
technique, each vertex of the mesh becomes the local 
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b 

Fig. 10 
dinosaur 
a Gaussian 
b Mean 

Torsion maxima of cuwature zero-crossing contours of the 

a 

b 

Fig. 11 
a Gaussian 
h Mean 

Torsion maxima of curvature zero-crossing contours of the cow 

origin around which semi-geodesic co-ordinates are 
constructed. A geodesic from the origin is constructed in 
an arbitrary direction, such as the direction of one of the 
incident edges. During the smoothing process, 3-D 
surfaces are sampled locally using different step sizes. 
Complete triangulated models of 3-D objects are 
constructed and using a local parametrisation technique, 
are then smoothed using a 2-D Gaussian filter. The 
smoothing eliminated the surface noise and small surface 
detail gradually, and resulted in gradual simplification of 
object shape. The surface Gaussian and mean curvatures 
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were also estimated. To visualise these curvature values on 
the surface, they are then mapped to colours and shown 
directly on the surface.’ All convex corners of the surface 
indicated high Gaussian curvature values, whereas the 
concave corners indicated low Gaussian curvature values 
and the curvature values of flat areas are close to zero. 

Gaussian and mean curvature zero-crossing contours 
were also recovered and displayed on the surface. Results 
indicated that as the surface is smoothed iteratively, the 
number of curvature zero-crossing contours is reduced. 
Curvature zero-crossing contours can be used for segment- 
ing surfaces into regions. Furthermore, the local maxima of 
Gaussian and mean curvatures, as well as the torsion 
maxima of zero-crossing contours of Gaussian and mean 
curvatures, were located and displayed on the surface. 
These features can be used by later processes for robust 
surface matching and object recognition with occlusion. 
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