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Abstract. A novel technique for multi-scale curvature computation on a free-form 3-D surface is presented. This is
achieved by convolving local parametrisations of the surface with 2-D Gaussian filters iteratively. In our technique,
semigeodesic coordinates are constructed at each vertex of the mesh. Smoothing results are shown for 3-D surfaces
with different shapes indicating that surface noise is eliminated and surface details are removed gradually. A number
of evolution properties of 3-D surfaces are described. Next, the surface Gaussian and mean curvature values are
estimated accurately at multiple scales which are then mapped to colours and displayed directly on the surface.
The performance of the technique when selecting different directions as an arbitrary direction for the geodesic at
each vertex are also presented. The results indicate that the error observed for the estimation of Gaussian and mean
curvatures is quite low after only one iteration. Furthermore, as the surface is smoothed iteratively, the error is further
reduced. The results also show that the estimation error of Gaussian curvature is less than that of mean curvature.
Our experiments demonstrate that estimation of smoothed surface curvatures are very accurate and not affected
by the arbitrary direction of the first geodesic line when constructing semigeodesic coordinates. Our technique
is independent of the underlying triangulation and is also more efficient than volumetric diffusion techniques
since 2-D rather than 3-D convolutions are employed. Finally, the method presented here is a generalisation of
the Curvature Scale Space method for 2-D contours. The CSS method has outperformed comparable techniques
within the MPEG-7 evaluation framework. As a result, it has been selected for inclusion in the MPEG-7 package
of standards.

Keywords: free-form surfaces, multi-scale description, local parametrisation, semigeodesic coordinates, Gaussian
and mean curvatures, estimation error

1. Introduction

Curvature estimation is an important task in 3-D object
description and recognition. Surface curvature pro-
vides a unique view-point invariant description of lo-
cal surface shape. Differential geometry (Goetz, 1970)
provides several measures of curvature, which include
Gaussian and mean curvatures. Combination of these
curvature values enable the local surface type to be
categorised.

This paper introduces a new technique for multi-
scale curvature computation on a smoothed 3-D sur-
face. Complete triangulated models of 3-D objects are
constructed and using a local parametrisation tech-
nique, are then smoothed using a 2-D Gaussian fil-
ter. The technique considered here is a generalisation
of earlier multi-scale representation theories proposed
for 2-D contours (Curvature Scale Space method)
(Mokhtarian and Mackworth, 1992) and space curves
(Torsion Scale Space method) (Mokhtarian, 1997).
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The Curvature Scale Space shape descriptor has been
selected for MPEG-7 standardization. More details of
the diffusion technique as well as a literature survey
appear in Mokhtarian et al. (1998).

In our approach, diffusion of the surface is achieved
through convolutions of local parametrisations of
the surface with a 2-D Gaussian filter (Mokhtarian
et al., 1998; Yuen et al., 1999). Semigeodesic coor-
dinates (Goetz, 1970) are utilised as a natural and effi-
cient way of locally parametrising surface shape. The
most important advantage of our method is that un-
like other diffusion techniques such as volumetric dif-
fusion (Koenderink and vanDoorn, 1986; Koenderink,
1990) or level set methods (Sethian, 1996), it has local
support and is therefore applicable to partial data cor-
responding to surface-segments. This property makes
it suitable for object recognition applications in pres-
ence of occlusions. It is also more efficient than those
techniques since 2-D rather than 3-D convolutions are
employed. Furthermore, note that techniques which ap-
ply smoothing in the normal direction need to first esti-
mate curvature in order to displace surface points by a
distance proportional to the curvature value. However,
curvature estimation itself poses a problem for these
methods. Our method overcomes this problem by in-
tegrating surface smoothing and curvature estimation
into one unified formalism.

Evolution properties of 3-D surfaces are described
in this paper. For example, it is shown that our iterative
Gaussian filtering converges to the solution of the heat
equation. The surface Gaussian and mean curvature
values are estimated accurately at multiple scales which
are then mapped to colours and displayed directly on
the surface provided in the Visualisation Toolkit (VTK)
(Schroeder et al., 1996).

The performance of our technique when selecting
different directions as an arbitrary direction for the con-
struction of semigeodesic coordinates and hence the
diffusion of 3-D surfaces, are also presented. The re-
sults indicate that the error observed for the estimation
of Gaussian curvature is smaller than that of mean cur-
vature and diffusion reduces estimation error of both
surface curvatures.

The organisation of this paper is as follows. Section 2
gives a brief overview of previous work on 3-D ob-
ject representations including the disadvantage(s) of
each method. Section 3 describes the relevant theory
from differential geometry and explains how a multi-
scale shape description can be computed for a free-form
3-D surface. Section 4 contains the evolution proper-

ties of 3-D surfaces. Section 5 covers the computation
of Gaussian and mean curvatures as well as their er-
ror estimations. Section 6 contains a brief summary of
an object recognition system based on the technique
presented in this paper. Section 7 presents results and
discussion. Section 8 contains the concluding remarks.

2. Literature Survey

Many object recognition systems rely on restrictions
imposed on the geometry of the object. However, com-
plex free-form surfaces may not be modelled easily
using volumetric primitives. A free-form surface is a
surface such that the surface normal is defined and con-
tinuous everywhere, except at sharp corners and edges
(Besl, 1990). Discontinuities in the surface normal or
curvature may be present anywhere on a free-form ob-
ject. The curves that connect these points of disconti-
nuity may meet or diverge smoothly. Recognition of
free-form objects is essential in inspection of arbitrary
curved surfaces and path planning for robot navigation.

This section presents a survey of previous work on
representation of 3-D surfaces. Sinha and Jain (1994)
provide an overview of geometry based representa-
tions derived from range data of objects. Almost all
work on 3-D curvature estimation has been applied to
range images rather than 3-D meshes (Berkmann and
Caelli, 1994; Flynn and Jain, 1989, 1991; Liang and
Todhunter, 1990; Besl and Jain, 1986; Grimson
and Lozano-Perez, 1984). Comprehensive surveys of
3-D object recognition systems are presented by Besl
and Jain (1985), Chin and Dyer (1986) and Suetens
et al. (1992). Some representation schemes for 3-D
objects have adopted some form of surface or volu-
metric parametric models to characterise the shape of
the objects. Current volumetric representations rely on
representing objects in terms of general cylinders, su-
perquadrics, set-theoric combinations of volume prim-
itives as in constructive solid geometry (CSG) or spatial
occupancy (Pentland, 1986; Solina and Bajcsy, 1990;
Chen and Lin, 1994; Samet, 1990). However, it may not
be possible to express objects with free-form surfaces
using for example, superquadric primitives. Surface-
based representations describe an object in terms of
the surfaces bounding the object and their properties
(Faugeras and Hebert, 1986; Jain and Hoffman, 1988;
Flynn and Jain, 1991), and are employed for recogni-
tion. Although there are several methods available to
model a surface, triangular meshes are the simplest and
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most effective form of polygons to cover a free-form
surface. The common types of polygonal meshes in-
clude the triangular mesh (Hilton et al., 1996a, b) and
the four sided spline patches. Triangular meshes have
been utilised in our work.

Polyhedral approximations (Faugeras and Hebert,
1986) fit a polyhedral object with vertices and rel-
atively large flat faces to a 3-D object. Their disad-
vantage is that the choice of vertices can be quite ar-
bitrary which renders the representation not robust.
Smooth 3-D splines (Stoddart and Baker, 1998) can
also be fitted to 3-D objects. Their shortcomings are
that the choice of knot points is again arbitrary and
that the spline parameters are not invariant. Gener-
alised cones or cylinders (Soroka and Bajcsy, 1976)
as well as geons (Pilu and Fisher, 1996) approximate a
3-D object using globally parametrised mathematical
models, but they are not applicable to detailed free-
form objects. Multi-view representations (Seibert and
Waxman, 1992) are based on a large number of views
of a 3-D object obtained from different viewpoints, but
difficulties can arise when a non-standard view is en-
countered. Delingette’s work on deformable surfaces
(Delingette, 1999; Delingette et al., 1992) is more suit-
able for surface reconstruction and/or image segmen-
tation. In volumetric diffusion (Koenderink, 1990) or
level set methods (Sethian, 1996), an object is treated
as a filled area or volume. The object is then blurred
by subjecting it to the diffusion equation. The bound-
ary of each blurred object can then be defined by ap-
plying the Laplacian operator to the smoothed area or
volume. The major shortcoming of these approaches
is lack of local support. In other words, the entire
object data must be available. This problem makes
them unsuitable for object recognition in presence of
occlusion.

A form of 3-D surface smoothing has been car-
ried out in Taubin (1995) but this method has draw-
backs since it is based on weighted averaging using
neighbouring vertices and is therefore dependent on
the underlying triangulation. The same surface can be
triangulated in many different ways. As a result, the out-
come of the application of this method will be different
in each case. Desbrun et al. (1999) presented a method
for 3-D mesh smoothing based on curvature flow, and
they devised a way of approximating curvature values
on the noisy mesh. However, this gives rise to a so-
called chicken-and-egg problem. Curvature estimation
on a noisy mesh is unreliable. To improve the estimates,
the data must be smoothed first. However, their method

requires curvature estimates before smoothing can be
carried out.

The smoothing of 3-D surfaces is a result of the
diffusion process (ter Haar Romeny, 1994). For pa-
rameterisation of a 3-D surface other methods have
also been studied, such as the asymptotic coordinates
(Kreyszig, 1959), isothermic coordinates (Goetz, 1970;
Chern et al., 1954) and global coordinates (Brechbuhler
et al., 1995) used for closed, simply connected objects.

Global representations such as the Extended
Gaussian Image (EGI) (Horn, 1984; Kang and Ikeuchi,
1993; Liang and Taubes, 1994) describe 3-D objects in
terms of their surface normal distributions on the unit
sphere with appropriate support functions. However,
arbitrary curved objects have to be either approximated
by planar patches or divided into regions based on the
Gaussian curvature. Another approach for specifying
a 3-D object is the view-centred representations. The
graph approach (Koenderink and vanDoorn, 1979) at-
tempts to group a set of infinite 2-D views of a 3-D
object into a set of meaningful cluster of appearances.
Murase and Nayar (1995) and Swets (1996) also ex-
ploit photometric information to describe and recog-
nise objects. A major drawback of view-centred repre-
sentations is lack of complete information. Part based
representations capture structure in object descriptions
(Raja and Jain, 1994; Dickinson et al., 1992), but there
is a lack of agreement in deciding the general set of
part primitives that need to be used in order to be suf-
ficient and appropriate. Furthermore computation of
parts from a single view of an object is difficult.

Recent approaches using splash and super polygonal
segments (Stein and Medioni, 1992) and algebraic
polynomials (Keren et al., 1994; Ponce et al., 1993)
have addressed the issue of representing complex
curved free-form surfaces. However, there are limita-
tions relating to object segmentation issues, restricting
objects to be topologically equivalent to a sphere and
sensitivity to noise when low-level surface features
are used.

3. Semigeodesic Parametrisation

Free-form 3-D surfaces are complex hence, no global
coordinate system exists on these surfaces which could
yield a natural parametrisation of that surface. Studies
of local properties of 3-D surfaces are carried out in
differential geometry using local coordinate systems
called curvilinear coordinates or Gaussian coordinates
(Goetz, 1970). Each system of curvilinear coordinates
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is introduced on a patch of a regular surface referred to
as a simple sheet. A simple sheet of a surface is obtained
from a rectangle by stretching, squeezing, and bending
but without tearing or gluing together. Given a paramet-
ric representation r = r(u, v) on a local patch, the val-
ues of the parameters u and v determine the position of
each point on that patch. Construction and implemen-
tation of semigeodesic coordinates in our technique is
described in detail in Mokhtarian et al. (1998).

3.1. Geodesic Lines

Geodesic lines are at the heart of a local semigeodesic
coordinate system. The following crucial property of
geodesic lines is actually utilized to construct geodesics
on 3-D triangular meshes:

3.1.1. Minimal Property of Geodesics. An arc of a
geodesic line C passing through a point P and lying
entirely in a sufficiently small neighborhood of a point
P of a surface S of class C2 is the shortest join of
P with any other point of C by a curve lying in the
neighborhood.

3.2. Geodesic Line Construction

To construct semigeodesic coordinates, geodesic lines
must be constructed on free-form 3-D meshes. Clearly
the segment of a geodesic that lies on any given triangle
is a straight line. Two situations must be considered:

• Extension of a geodesic when it intersects a triangle
edge

• Extension of a geodesic when it intersects a triangle
vertex

Lemma 1 addresses the first situation.

Lemma 1. Suppose a geodesic intersects an edge e
shared by triangles T1 and T2. The extension of this
geodesic beyond e is obtained by rotating T2 about e
so that it becomes co-planar with T1, extending the
geodesic in a straight line on T2, and rotating T2 about
e back to its original position.

Proof: Assume by contradiction that the procedure
above does not construct a geodesic. Let g1 be the seg-
ment of the geodesic on T1 and let g2 be the segment of
the geodesic on T2. Rotate T2 about e so that it becomes
coplanar with T1. By assumption, g1 and g2 will not be

co-linear. Hence, for a point P1 on g1 and a point P2 on
g2, there will be a shorter path from P1 to P2. This is
the straight line joining P1 to P2. Now rotate T2 back
to its original position. The length of the path just con-
structed remains the same, so it will still be shorter than
the geodesic from P1 to P2. A contradiction has been
reached. Therefore the procedure described correctly
constructs a geodesic. Note that the construction above
extends to several triangles as long as they remain in a
local neighbourhood.

Lemma 2 addresses the second case.

Lemma 2. Suppose a geodesic arrives at a vertex
V of the mesh. Define the normal vector n at V as
the average of the surface normals of all the triangles
incident on V weighted by the incident angle. Let Q
be the plane formed by the geodesic incident on V and
n. The extension of this geodesic beyond V is found by
intersecting Q with the mesh.

Proof: The curvature vector k of the path obtained by
the procedure above lies in Q. k is also perpendicular to
tangent plane T (which is defined as perpendicular to
n at V ). The vector of geodesic curvature of the path is
obtained by projecting k on the tangent plane. It follows
that geodesic curvature of the path is zero. Hence the
path is a geodesic line.

Figures 1 and 2 illustrate Lemmas 1 and 2 respec-
tively.

3.3. Semigeodesic Coordinates

Semigeodesic coordinates can be constructed in the
following way at a point P on a surface S of class C2:

• Choose a geodesic line C through point P in an ar-
bitrary direction.

• Denote by v the arclength parameter on C , such that
P corresponds to the value v = 0.

• Take further through every point of C the geodesic
line L perpendicular to C at the corresponding point.

• Denote by u the arclength parameter on L .

The two parameters u and v determine the position
of each point in the domain swept out by these geodesic
lines. It can be shown that in a sufficiently small neigh-
borhood of the point P , semigeodesic coordinates can
always serve as curvilinear coordinates in a regular
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Figure 1. Geodesic line at a triangle edge.

Figure 2. Geodesic line at a vertex.

parametric representation of S (Goetz, 1970). The or-
thogonal cartesian coordinates in the plane are a special
case of semigeodesic coordinates on a flat surface.

Figure 3 shows the complete semigeodesic coordi-
nates on a triangular mesh.

3.4. Gaussian Filtering of a 3-D Mesh

Gaussian filtering is a weighted average smoothing
carried out at a vertex and its neighbourhood. A 2-D
Gaussian filter is generated according to the formula
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Figure 3. Semigeodesic coordinates on a triangular mesh.

below (Banks, 1990):

G(u, v, σ ) = 1

2πσ 2
e− (u2+v2)

2σ2 (1)

The result of smoothing depends entirely on a vertex
and its neighbourhood. In order to minimise over sam-
pling and under sampling, the area size must be neither
too large nor too small. In other words, a local area
must cover a reasonable size neighbourhood in order
to provide accurate results. A local semigeodesic co-
ordinate system may cover a large number of triangles
or just a few, depending on the size of those triangles.
Experiments were conducted with a filter size of 9 with
σ = 1.0. The unit used for sampling the mesh was the
average value of the lengths of all triangle edges on the
mesh. The meshes are normalised after each iteration
to avoid scale problems.

In order to smooth a 3-D surface, a fixed size 2-D
Gaussian filter with σ = 1.0 is convolved with the local
area. Local parametrisation of the surface yields:

r (u, v) = (x(u, v), y(u, v), z(u, v)) (2)

The smooth surface is defined by:

R(u, v, σ ) = (X (u, v, σ ), Y(u, v, σ ), Z(u, v, σ ))

(3)

where

X (u, v, σ ) = x(u, v) ∗ G(u, v, σ )

Y(u, v, σ ) = y(u, v) ∗ G(u, v, σ )

Z(u, v, σ ) = z(u, v) ∗ G(u, v, σ )

and ∗ denotes convolution. This process is repeated at
each vertex, and the new vertex positions after filtering
define the smoothed surface. This procedure is iterated
several times to yield heat diffusion of the surface.

4. Evolution Properties of 3-D Surfaces

Before we present the results on error estimation of
curvature computation on 3-D surfaces, the following
theorems covering fundamental properties of evolution
will be presented in this section.

Theorem 1. The order of application of evolution
and a shape preserving transformation to a surface
does not change the final result.

Proof: Suppose surface S is evolved into Sσ . Every
point of Sσ is a weighted average of a subset of points
of S. Therefore evolution at each point Q of S can
be expressed as the convolution of a neighbourhood of
Q with a 2-D function (not Gaussian) with unknown
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values.

P(X, Y, Z ) = (x(u, v) ⊗ f (u, v),

y(u, v) ⊗ f (u, v), z(u, v) ⊗ f (u, v))

⊗ denotes convolution. Now apply an affine transform
to point P to get P1(X1, Y1, Y1) where:

X1 = a1 X + b1 Y + c1 Z + d1

Y1 = a2 X + b2 Y + c2 Z + d1

Z1 = a3 X + b3 Y + c3 Z + d1

Alternatively, apply an affine transform to point Q first;
and then evolve:

X2 = (a1 x(u, v) + b1 y(u, v)

+ c1 z(u, v) + d1) ⊗ f (u, v)

Y2 = (a2 x(u, v) + b2 y(u, v)

+ c2 z(u, v) + d2) ⊗ f (u, v)

Z2 = (a3 x(u, v) + b3 y(u, v)

+ c3 z(u, v) + d3) ⊗ f (u, v)

so: X2 = X1, Y2 = Y1 and Z2 = Z1. Affine also includes
shape preserving transform.

Theorem 2. Let S be a closed surface and let H be
its convex hull. S remains inside H during evolution.

Proof: Since H is a convex surface, every plane P
tangent to H contains that surface in the left (or right)
half-space it creates. Since S is inside H,S is also
contained in the same half-space. Now rotate P and S
so that P becomes parallel to the xy plane. P is now
described by the equation z = c. Since P does not
intersect S, it follows that Qz ≥ c for every point Q
on S. Let Sσ be an evolved version of S. Every point
of Sσ is a weighted average of a subset of points of S.
Therefore, Rz ≥ c for every point R on Sσ , and Sσ is
also contained in the same half-space. This result holds
for every plane tangent to H; therefore Sσ is contained
inside the intersection of all the left (or right) half-
spaces created by the tangent planes of H. It follows
that Sσ is also inside H.

Theorem 3. Iterative Gaussian filtering of a surface
converges to the solution of the heat diffusion equation.

Proof: Let ε be the maximum error in the location of
any point of surface S when the heat diffusion of S is
approximated through Gaussian filtering with standard
deviation �σ . Observe that at a point P of S

ε = |(r + Hn) − (r + �rg)| = |Hn − �rg|

where H is mean curvature, n is the normal vector at
P, r is the position vector of P and �rg is the amount
of change in the position vector of P after Gaussian
filtering. According to heat diffusion equation

∂r
∂t

= Hn

Let

�rg = Hgng

where ng is a unit vector with the same direction as
that of �rg , and Hg is equal to length of �rg . Let k1

and k2 be the principal curvatures at P . Assume that k1

and k2 are constant in a small neighborhood of P . The
following cases can be distinguished:

• k1 and k2 are both zero: the surface is locally planar.
• One of k1 and k2 is zero: the surface is locally cylin-

drical.
• k1 and k2 are both positive or both negative: the sur-

face is locally ellipsoidal.
• One of k1 and k2 is positive and the other is negative:

the surface is locally saddle-shaped.

In each case, it can be confirmed that Gaussian filter-
ing is equivalent to diffusion smoothing of the surface.
It follows that for a small �σ, Hg → H and ng → n,
and therefore ε → 0. After k iterations of smoothing,
total error is given by kε which is also small.

Theorem 4. Let S be a 3-D surface in C2. Let Sσ

be an evolved version of S with a cusp point at P.
There is a δ > 0 such that Sσ−δ intersects itself in a
neighborhood of point P.

Proof: It follows from the equation for heat diffusion

∂r

∂t
= Hn

that for two point with infinitesimal distance on S,
application of infitesimal diffusion will result in two
new points also with infinitesimal distance. This is
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Figure 4. Cross-section of the surface.

because at two nearby points P1 and P2, H1 ≈ H2

and n1 ≈ n2 so

∂r1

∂t
≈ ∂r2

∂t

It follows further that the tangent planes T1 and T2 will
also be at infitesimal distance. Now suppose there is a
cusp point on Sσ at point P . That cusp point did not
exist on the original surface. Consider two points P1

and P2 on Sσ−δ in a small neighborhood of P . The
cusp point at P on Sσ can not be of the forms shown
in Fig. 4(a) and (b), since the difference between the
tangent planes at P1 and P2 on Sσ would be large (which
is not possible). It follows that only cusp points of the
form shown in Fig. 4(c) are possible since only in this
case, the difference between tangent planes at P1 and
P2 near P is small. Applying reverse diffusion to this
object in a neighborhood of P results in a surface that
intersects itself near P . It follows that Sσ−δ is self-
intersecting in a neighborhood of the cusp point.

Theorem 5. Simple (not self-intersecting) surfaces
remain simple during evolution.

Proof: Assume by contradiction that S is a simple
surface that intersects itself during evolution. The loca-
tion vector of each point of S is a continuous function
of σ during evolution; therefore S must touch itself
at point P before self-intersection. Let Sσ0 be such a
surface. Consider two neighborhoods S1 and S2 of Sσ0

that have point P only in common. Hence S1 and S2

are non-overlapping. Note that S1 and S2 have the same
tangent plane at P . Denote this tangent plane by T . The
tangent plane exists since it follows from Theorem 4
that P can not be a cusp point on either S1 or S2 since
Sσ does not self-intersect for σ ≤ σ0. Recall that the

infinitesimal movement during arc length evolution of
each point of S1 and S2 is determined by the equation

∂r
∂t

= Hn

where H is the mean curvature, n is normal and t is
time. Therefore during arc length evolution, every point
will move in the direction of the normal vector by an
amount equal to the curvature at that point. Similarly,
during reverse arc length evolution, every point will
move in the opposite direction of the normal vector by
an amount equal to the curvature at that point. It follows
that if S1 and S2 are on opposite sides of T , after an in-
finitesimal amount of reverse arc length evolution they
will intersect. This is a contradiction of the assumption
that S was simple before touching itself. Assume then
that S1 and S2 are on the same side of T . Note that S1

and S2 can not be overlapping since they would still
be overlapping after an infinitesimal amount of reverse
arc length evolution, which is also a contradiction of
the assumption that S was simple before touching it-
self. Let S1 be the segment inside S2, i.e., the tangent
to S2 always has S1 to the same side. It can be seen
that S1 has a larger curvature at P than S2. Therefore,
after an infinitesimal amount of reverse arc length evo-
lution, point P on S1 and point P on S2 will move in
the same direction, but point P on S1 will move by
a larger amount. It follows that after an infinitesimal
amount of reverse arc length evolution, S1 and S2 will
intersect, which is again a contradiction. It follows that
S remains simple during arc length evolution.

5. Curvature Estimation

This section presents techniques for accurately estimat-
ing Gaussian and mean curvatures at multiple scales
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on smoothed free-form 3-D surfaces. Differential ge-
ometry provides several measures of curvature, which
include Gaussian and mean curvatures (Goetz, 1970).
Consider a local parametric representation of a 3-D
surface

r = r(u, v)

with coordinates u and v, where

r(u, v) = (x(u, v), y(u, v), z(u, v))

Gaussian curvature K exists at regular points of a sur-
face of class C2. When r(u, v) corresponds to semi-
geodesic coordinates, K is given by:

K = buubvv − b2
uv

x2
v + y2

v + z2
v

(4)

where subscripts denote partial derivatives, and

buu = Axuu + Byuu + Czuu√
A2 + B2 + C2

bvv = Axvv + Byvv + Czvv√
A2 + B2 + C2

buv = Axuv + Byuv + Czuv√
A2 + B2 + C2

where

A = yuzv − zu yv

B = xvzu − zvxu

C = xu yv − yu xv

Mean curvature H also exists at regular points of a
surface of class C2. Again, when r(u, v) corresponds
to semigeodesic coordinates, H is given by:

H = bvv + (
x2

v + y2
v + z2

v

)
buu

2
(
x2

v + y2
v + z2

v

) (5)

The mathematical properties of the two surface curva-
ture functions are now discussed in more detail. Both
Gaussian and mean curvatures values are direction-free
quantities. Gaussian and mean curvatures are invariant
to arbitrary transformation of the (u, v) parameters, ro-
tations and translations of a surface. Combination of
these curvature measures enable the local surface type
to be categorised. On smoothed surfaces of 3-D ob-
jects, the procedure for estimating the Gaussian and

mean curvatures are as follows. For each point of the
surface,

p(x(u, v), y(u, v), z(u, v))

the corresponding local neighbourhood data is con-
volved with the partial derivatives of the Gaussian func-
tion G(u, v, σ ), i.e.,

xu = x ∗ ∂G

∂u
, yu = y ∗ ∂G

∂u
, zu = z ∗ ∂G

∂u

xv = x ∗ ∂G

∂v
, yv = y ∗ ∂G

∂v
, zv = z ∗ ∂G

∂v

xuu = x ∗ ∂2G

∂u2
, yuu = y ∗ ∂2G

∂u2
, zuu = z ∗ ∂2G

∂u2

xvv = x ∗ ∂2G

∂v2
, yvv = y ∗ ∂2G

∂v2
, zvv = z ∗ ∂2G

∂v2

xuv = x ∗ ∂2G

∂u∂v
, yuv = y ∗ ∂2G

∂u∂v
, zuv = z ∗ ∂2G

∂u∂v

where ∗ denotes convolution. Finally, curvature values
on a 3-D surface are estimated by substituting these
values into Eqs. (4) and (5), respectively.

5.1. Curvature Error

For two principal curvatures k1 and k2, the Gaussian
and mean curvatures are defined as:

K = k1k2

and

H = k1 + k2

2

Now if k1 = k1 + ε and k2 = k2 + ε, where ε represents
error (ε � 1), then Gaussian curvature is given by,

K = k1k2 + ε(k1 + k2) + ε2 (6)

and mean curvature H is given by

H = k1 + k2

2
+ ε (7)

Since k1 and k2 are very small values (object sizes are
quite large to avoid numerical problems) and

ε(k1 + k2) + ε2 � ε

it follows that for an error in the values of prin-
cipal curvatures k1 and k2, the error introduced in
Gaussian curvature is expected to be smaller than that
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of mean curvature. Note that Gaussian and mean curva-
tures have different units. The point of this analysis was
simply to demonstrate that the numerical value of the
estimation error in Gaussian curvature is smaller than
that of mean curvature. On smoothed surfaces of 3-D
objects, the procedure for curvature estimation error is
as follows:

For each vertex the curvature values are computed
for all directions and the average curvature value is then
used as the correct value of curvature for that vertex.
Then, the error in direction i is given by,

errori = |k̄ − ki |
|k̄| (8)

where ki is the curvature values for direction i , and k̄
is the average curvature value.

6. Robust Free-Form 3-D Object Recognition

A system for free-form 3-D object recognition using
3-D models has been developed (Mokhtarian et al.,
2000, 2001). The system is based on the technique
presented in this paper. Smoothing is utilised to re-
move noise and to reduce the number of feature points
to add to the efficiency and robustness of the system.
The local maxima of Gaussian and mean curvatures
are selected as feature points. Furthermore, the tor-
sion maxima of the zero-crossing contours of Gaussian
and mean curvatures are also chosen as feature points.
Triangles are then formed with feature points as the
vertices. Gaussian and mean curvature values are com-
puted at the vertices as well as the lengths of the edges.
A triangle value defined in terms of vertex curvature
values and edge lengths is computed and used to index
into a hash table.

High ranking objects from the geometric hashing
stage are selected for the global verification stage.
The goal of this stage is to ensure that the final se-
lected model is globally consistent with the data. Three-
dimensional transform parameters are computed for the
local matches detected earlier, and a clustering process
is applied. The largest clusters indicate the most likely
objects present in the scene. Experiments included
3-D rotation, translation and scaling as well as occlu-
sion and missing data. Our database consisted of 20
objects with both simple and complex shapes. Most of
the objects corresponded to real data. Recognition re-
sults indicated that the system performed robustly and
efficiently.

7. Results and Discussion

This section presents some results on diffusion and cur-
vature estimation as well as the performance of our
technique for curvature estimation when all possible
directions at each vertex on a 3-D surface are selected
as an arbitrary direction in order to construct the first
geodesic line.

7.1. Diffusion

The smoothing routines were implemented entirely in
C++. Complete triangulated models of 3-D objects
used for our experiments are constructed at our centre
(Hilton et al., 1996b). Each iteration of smoothing of
a surface with 1000 vertices takes about 0.5 second of
CPU time on an UltraSparc 170E. Smoothing results
are shown where the direction of one of the incident
edges is selected as an arbitrary direction and the sur-
face is also sampled locally at a step size equal to 1000.

Note that without postprocessing our smoothing
method eventually shrinks objects towards their centre
of mass. This shrinking effect is not a problem unless
it is considered undesirable in a specific application. In
fact, we cancel out the shrinking by rescaling objects
after each iteration of smoothing.

The first test object was a foot with 2898 triangles and
1451 vertices, which becomes rounded iteratively and
evolves into an ellipsoidal shape after 100 iterations as
shown in Fig. 5. The second test object was a rabbit with
1996 triangles and 1000 vertices as shown in Fig. 6.
The ears disappear after 10 iterations and the object
becomes a smooth and rounded shape. The third test
object was a dinosaur with 2996 triangles and 1500 ver-
tices as shown in Fig. 7. The object becomes smoother
gradually and the legs, tail and ears are removed af-
ter 17 iterations. The fourth test object was a cow with
3348 triangles and 1676 vertices as shown in Fig. 8. The
surface noise is eliminated iteratively with the object
becoming smoother gradually where after 15 iterations
the legs, ears and tail are removed, as was seen for the
dinosaur. The final test object was a chair with 3788
triangles and 1894 vertices as shown in Fig. 9. This is
a different type of object with a hole. As can be seen,
holes do not casue any problems for this method.

7.2. Curvature Estimation

This section presents the results of application of our
curvature estimation techniques to 3-D objects using
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Figure 5. Diffusion of the foot.

Figure 6. Diffusion of the rabbit.

methods described in Section 5. The diffusion results
for other 3-D surfaces were given in Mokhtarian et al,
(1998). The first example is a foot. After smoothing
the object, the Gaussian curvatures of all vertices were
estimated using Eq. (4). To visualise these curvature

Figure 7. Smoothing of the dinosaur.

Figure 8. Smoothing of the cow.

values on the surface, they are then mapped to colours
using the Visualisation Toolkit (VTK) (Schroeder et al.,
1996), and the results are shown in Fig. 10(a). Surface
curvature colours are coded as follows: red = high,

blue = low and other colours designate in-between
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Figure 9. Diffusion of the chair.

values. All convex corners of the foot are red, indicating
high curvature values, whereas the concave corners are
blue indicating low curvature values and flat areas are
green since their curvature values are close to zero. The
same experiment was repeated to estimate the mean
curvatures of the foot using Eq. (5) and the results are
shown in Fig. 10(b). This indicates that mean curvature
values for the edges are different than those for flat
areas, as expected.

The next object was a rabbit. Its Gaussian curva-
ture values were estimated and results are shown in
Fig. 11(a). These results again confirm that the curva-
ture values are high and low at convex and concave
corners, respectively. The mean curvatures of the rab-
bit were also estimated and the results are shown in
Fig. 11(b). Gaussian and mean curvatures were also
estimated for more complex objects. Figures 12 and 13
show the results for a dinosaur and a cow, respectively.

7.3. Estimation of Error in Curvature Computation

We first applied our curvature estimation technique to
a surface with known curvature values. Our method
was tested on a 3-D mesh representing a sphere. It was
confirmed that Gaussian and mean curvature values es-
timated at the vertices were approximately equal. The
errors observed were in agreement with expectations
(see below). However, we believe that the use of objects

Figure 10. Gaussian and mean curvatures on the foot.

Figure 11. Gaussian and mean curvatures on the rabbit.

Figure 12. Gaussian and mean curvatures on the dinosaur.

Figure 13. Gaussian and mean curvatures on the cow.
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with known curvatures is not a satisfactory method of
testing our method. Our technique was designed for
curvature estimation on noisy, free-form meshes with
unknown curvature values. Objects with known curva-
tures tend to have quite simple shapes. As a result, it
is not difficult to devise techniques for curvature es-
timation on those objects which will perform well by
exploiting constraints about object shape.

As mentioned before, in our method the direction of
the first geodesic line is randomly selected. We will
therefore examine curvature estimation error for all
possible directions. The smoothing procedure was re-
peated where for each vertex all possible directions for
the first geodesic line were constructed and different
step sizes were considered. Specifically, the direction
of each incident edge was defined as a possible direc-
tion. After the object was smoothed, for each vertex the
curvature values were computed for all directions and
the curvature errors were estimated using Eq. (8). Then,
the maximum, minimum and average values of the cur-
vature errors were computed. Figure 14(a) shows the
error distribution for estimating maximum Gaussian
curvature with the step size varying from 500 to 3000.
These results indicate that for the step size between
1000 to 2000 the error is reduced to about 1.0% after
one iteration. We then repeated the experiment when
for each vertex the minimum error in curvature values
of all possible directions were computed and results
are shown in Fig. 14(b). These indicate that for the
step size between 1000 to 2000 the error is reduced to
about 0.5% after one iteration. When average curva-
ture value of all possible directions was calculated the
average curvature error is about 0.75% after one iter-
ation, as shown in Fig. 14(c). However, as the surface
becomes smooth iteratively, the errors reduce as shown
in Fig. 14. After 100 iterations the errors in maximum,
minimum and average curvature values are reduced to
0.55%, 0.35% and 0.45%, respectively.

The above procedures were also repeated for esti-
mation of mean curvatures. Figure 15(a) and (b) shows
the error distributions for the estimation of mean cur-
vatures, and the error is also reduced for the step sizes
between 1000 to 2000, which are about 3.0% and 1.0%
for the maximum and minimum mean curvatures, re-
spectively. For the average value of mean curvature, the
error is about 2.0% as shown in Fig. 15(c). As the sur-
face becomes smooth iteratively, the errors are reduced
as shown in Fig. 15 and after 100 iterations the er-
rors in maximum, minimum and average curvature val-
ues drop to about 2.2%, 0.5% and 1.4%, respectively. Figure 14. Gaussian curvature error distribution of the foot.
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Figure 15. Mean curvature error distribution of the foot. Figure 16. Gaussian curvature error distribution of the rabbit.
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Figure 17. Mean curvature error distribution of the rabbit. Figure 18. Gaussian curvature error distribution of the dinosaur.
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Figure 19. Mean curvature error distribution of the dinosaur. Figure 20. Gaussian curvature error distribution of the cow.
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Figure 21. Mean curvature error distribution of the cow.

Notice that the error for the estimation of Gaussian
curvatures are lower than that of the mean curvature as
was discussed in the previous section. Figure 16 shows
the error distribution for estimating Gaussian curva-
tures of the rabbit when all possible directions were
selected. Again the errors were reduced for step sizes
between 1000 to 2000 and for one iteration, the errors
for maximum, minimum and average Gaussian curva-
tures are about 1.23%, 0.96% and 1.15%, respectively.
After 24 iterations these errors reduce to about 0.92%,
0.5% and 0.7%, respectively. Figure 17 also shows the
error distribution for estimating mean curvature of the
rabbit and these results also indicate that the errors for
maximum, minimum and average curvature values are
about 2.85%, 2.7% and 2.8%, respectively. After 24
iterations these errors reduce to about 2.1%, 1.6% and
1.9%, respectively.

Figure 18 shows the error distribution for estimating
Gaussian curvatures of the dinosaur when all possi-
ble directions were selected. The errors were reduced
for step sizes between 1000 to 2500 and for one it-
eration, the errors for maximum, minimum and aver-
age Gaussian curvatures are about 0.94%, 1.23% and
1.10%, respectively. After 17 iterations these errors re-
duce to about 0.52%, 0.92% and 0.7%, respectively.
Figure 19 also shows the error distribution for estimat-
ing mean curvature of the dinosaur and these results
also indicate that the errors for maximum, minimum
and average curvature values are about 2.60%, 2.72%
and 2.65%, respectively. After 17 iterations these errors
reduce to about 2.0%, 1.9% and 1.92%, respectively.
Figure 20 shows the error distribution for estimating
Gaussian curvatures of the cow when all possible di-
rections were selected. Again the errors were reduced
for step sizes between 1000 to 2000 and for one iter-
ation, the errors for maximum, minimum and average
Gaussian curvatures are about 1.29%, 1.0% and 1.1%,
respectively. After 15 iterations these errors reduce to
about 1.0%, 0.54% and 0.76%, respectively. Figure 21
further shows the error distribution for estimating mean
curvature of the cow and these results also indicate that
the errors for maximum, minimum and average curva-
ture values are about 2.70%, 2.57% and 2.62%, respec-
tively. After 15 iterations these errors reduce to about
2.07%, 1.96% and 2.0%, respectively.

Our experiments indicate that estimation of
Gaussian and mean curvatures on smoothed surfaces
is very accurate and not affected by the arbitrary di-
rection of the first geodesic line when constructing
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semigeodesic coordinates. Smoothing is necessary to
remove noise from the surface before curvature can
be estimated reliably. While smoothing might cause a
displacement of features, since scale changes slowly,
the resulting displacement is small, and therefore,
it is not difficult to determine the correspondence
between the features across scales. Our technique
was also applied to a number of incomplete sur-
faces with the results shown in Yuen et al. (1999).
Animation of surface diffusion can be observed
at: http://www.ee.surrey.ac.uk/Research/VSSP/demos/
css3d/index.html

8. Conclusions

A novel technique for multi-scale curvature compu-
tation on a free-form 3-D surface is presented. Semi-
geodesic coordinates were constructed at each vertex
of the mesh which became the local origin. A geodesic
from the origin was first constructed in an arbitrary
direction such as the direction of one of the inci-
dent edges. During the diffusion process, 3-D surfaces
were also sampled locally using different step sizes.
Complete triangulated models of 3-D objects were con-
structed and using a local parametrisation technique,
were then smoothed using a 2-D Gaussian filter. The
smoothing eliminated the surface noise and small sur-
face detail gradually, and resulted in gradual simplifi-
cation of object shape. Evolution properties of 3-D sur-
faces were described in this paper. For example, it was
shown that our iterative Gaussian filtering converges
to the solution of the heat equation. The performance
of our technique for curvature estimation when select-
ing different directions as an arbitrary direction at each
vertex was also presented and results indicated that the
errors involved in the estimation of Gaussian and mean
curvatures were quite small after only one iteration.
Furthermore, as the surface became smoothed itera-
tively, the error was further reduced for both Gaussian
and mean curvatures. These results indicated that esti-
mation of Gaussian and mean curvatures on smoothed
surfaces is very accurate and not affected by the arbi-
trary direction of the first geodesic line when construct-
ing semigeodesic coordinates. It was also shown that
the error for the estimation of Gaussian curvature is less
than that of the mean curvature. The surface Gaussian
and mean curvatures were also mapped to colours, and
shown directly on the surface provided in the Visuali-
sation Toolkit (VTK). All convex corners of the surface
indicated high Gaussian curvature values, whereas the

concave corners indicated low Gaussian curvature val-
ues and the curvature values of flat areas are close to
zero.
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